卷积神经网络padding和strides图示

Convolution animations

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no strides Arbitrary padding, no strides Half padding, no strides Full padding, no strides
No padding, strides Padding, strides Padding, strides (odd)

Transposed convolution animations

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no strides, transposed Arbitrary padding, no strides, transposed Half padding, no strides, transposed Full padding, no strides, transposed
No padding, strides, transposed Padding, strides, transposed Padding, strides, transposed (odd)

Dilated convolution animations

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no stride, dilation

img{
width: 150px;
max-width: 100%;
}

原文地址:https://www.cnblogs.com/toooney/p/10816839.html

时间: 2024-11-06 15:31:32

卷积神经网络padding和strides图示的相关文章

卷积神经网络---padding

#coding:utf-8 import tensorflow as tf tf.reset_default_graph() image = tf.random_normal([1, 112, 96, 3]) in_channels = 3 out_channels = 32 kernel_size = 5 conv_weight = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, in_channels, out_chann

TensorFlow框架(4)之CNN卷积神经网络详解

1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对于上图中隐藏层的第j个神经元的输出可以表示为: 其中,f是激活函数,bj为每个神经元的偏置. 1.2 卷积神经网络 1.2.1 网络结构 卷积神经网络与多层前馈神经网络的结构不一样,其每层神经元与下一层神经元不是全互连,而是部分连接,即每层神经层中只有部分的神经元与下一层神经元有连接,但是神经元之间

深度学习之卷积神经网络CNN及tensorflow代码实现示例

一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个:若输入的是28×28 带有颜色的RGB格式的手写数字图片,输入神经元就有28×28×3=2352 个-- .这很容易看出使用全连接神经网络处理图像中的需要训

卷积神经网络CNN原理以及TensorFlow实现

在知乎上看到一段介绍卷积神经网络的文章,感觉讲的特别直观明了,我整理了一下.首先介绍原理部分. 通过一个图像分类问题介绍卷积神经网络是如何工作的.下面是卷积神经网络判断一个图片是否包含"儿童"的过程,包括四个步骤:图像输入(InputImage)→卷积(Convolution)→最大池化(MaxPooling)→全连接神经网络(Fully-ConnectedNeural Network)计算. 首先将图片分割成如下图的重叠的独立小块:下图中,这张照片被分割成了77张大小相同的小图片.

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助. 1 感受野的概念 在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小. RCNN论文中有一段描述,Alexnet网络pool5输出的特征图上的像素在输入图像上有很大的感受野(have very

12 使用卷积神经网络识别手写数字

看代码: 1 import tensorflow as tf 2 from tensorflow.examples.tutorials.mnist import input_data 3 4 # 下载训练和测试数据 5 mnist = input_data.read_data_sets('MNIST_data/', one_hot = True) 6 7 # 创建session 8 sess = tf.Session() 9 10 # 占位符 11 x = tf.placeholder(tf.f

tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)

mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru

深度学习:Keras入门(二)之卷积神经网络(CNN)

说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例: 把上述的计算结果269带入此公式,得出f(x)=1 1.3 神经元 如图是一个人工神经元的模型: (

学习笔记TF057:TensorFlow MNIST,卷积神经网络、循环神经网络、无监督学习

MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .TensorFlow搭建卷积神经网络(CNN)模型,训练MNIST数据集. 构建模型. 定义输入数据,预处理数据.读取数据MNIST,得到训练集图片.标记矩阵,测试集图片标记矩阵.trX.trY.teX.teY 数据矩阵表现.trX.teX形状变为[-1,28,28,1],-1 不考虑输入图片数量,28x