【bzoj 2839】集合计数

权限题

根据广义容斥的套路就很好做了

设\(g_i\)表示交集至少有\(i\)个元素,\(f_i\)表示交集恰好有\(i\)个元素

显然有

\[g_i=\sum_{j=i}^n\binom{j}{i}f_j\]

二项式反演可得

\[f_i=\sum_{j=i}^n(-1)^{j-i}\binom{j}{i}g_j\]

我们求得就是\(f_k\)

我们考虑\(g\)如何求

我们先从\(n\)个元素里选择\(j\)个元素作为我们的交集,这里是\(\binom{n}{j}\),之后对于剩下的\(n-j\)个元素构成的\(2^{n-j}\)个子集我们从里面任意选择一些,之后并上这\(j\)个元素就可以了

于是\(g_j=2^{2^{n-j}}\),就是\(2^{n-j}\)个子集都可以选或者不选

记得指数上对\(mod-1\)取模

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=1000005;
const LL mod=1000000007;
inline int read() {
    char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
    while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
LL fac[maxn],inv[maxn],pw[maxn];
int n,k;
inline LL ksm(LL a,int b) {
    LL S=1;
    while(b) {if(b&1) S=S*a%mod;b>>=1;a=a*a%mod;}
    return S;
}
inline LL C(int n,int m) {
    if(m>n) return 0;
    return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main() {
    n=read(),k=read();
    fac[0]=1;
    for(re int i=1;i<=n;i++) fac[i]=(1ll*i*fac[i-1])%mod;
    inv[n]=ksm(fac[n],mod-2);
    for(re int i=n-1;i>=0;--i) inv[i]=(1ll*(i+1)*inv[i+1])%mod;
    pw[0]=1;
    for(re int i=1;i<=n;i++) pw[i]=(2ll*pw[i-1])%(mod-1);
    LL ans=0;
    for(re int i=k;i<=n;i++) {
        LL g=C(n,i)*ksm(2,pw[n-i])%mod;
        if((i-k)&1) ans=(ans-C(i,k)*g%mod+mod)%mod;
            else ans=(ans+C(i,k)*g%mod)%mod;
    }
    printf("%d\n",(int)ans);
    return 0;
}

原文地址:https://www.cnblogs.com/asuldb/p/10630880.html

时间: 2024-10-06 18:50:17

【bzoj 2839】集合计数的相关文章

BZOJ 2839 集合计数 容斥原理

题目大意:给定n个元素,求交集大小为k的集合的集合共有多少种 考虑容斥原理 计算交集大小至少为i的集合有多少种 首先需要选出i个元素 方案为C(n,i) 其它2^(n-i)个集合每个可选可不选 一共2^[2^(n-i)]种 故答案为Σ[k<=i<=n]C(n,i)C(i,k)*2^[2^(n-i)] #include <cstdio> #include <cstring> #include <iostream> #include <algorithm&

bzoj 2839 集合计数——二项式反演

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i 个,则 \( g(i)=C_{n}^{i}*(2^{2^{n-i}}-1) \) \( g(i)=\sum\limits_{j=i}^{n}C_{j}^{i}f(j) \) \( f(i)=\sum\limits_{j=i}^{n}(-1)^{j-i}C_{j}^{i}g(j) \) 以为把 g 写

bzoj2839 集合计数

2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 243  Solved: 129 [Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample I

bzoj2839 集合计数(容斥)

2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Inp

BZOJ 1833 数字计数(统计[a,b]每个数字出现次数)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1833 题意:给定区间[a,b].求区间内0到9每个数字出现的次数. 思路:f[i][j]表示到后i位是否全 0(j=1表示i位之前全0)这个状态某个数字出现的次数,p[i][j]表示这个状态后面有多少个数字.那么当前枚举到的数字为要统计的数字时,答案加 上后面还有多少种数字,即下一个状态的p值.那么我们枚举要统计的数字依次统计即可. i64 f[20][2],p[20][2]; i64

BZOJ 2734 集合选数(状态压缩DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2734 题意:给出一个由1到n的数字组成的集合.定义合法子集为若x在子集中则2x.3x均不能在子集中.求有多少个合法的子集. 思路: 1   3    9 2   6    12 4   12   36 对于上面的矩阵,我们发现就等价于不选相邻数字的方案数.因此枚举每个还没有用到的数字,建立以该数字为左上角的矩阵.接着就是状态压缩DP. int a[N][N]; i64 f[2][1<<

【BZOJ2839】集合计数 组合数+容斥

[BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HINT [样例说明]假设原集合为{A,B,C}则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB

51nod 1352:集合计数

1352 集合计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个. Input 第1行:1

bzoj 4036 集合幂级数

集合幂级数其实就是一种集合到数的映射,并且我们针对集合的一些操作(or and xor and specil or )为这种映射定义运算.其中一些东西可以通过某些手段将其复杂度降低. 还要写一些其他两种. 1 /************************************************************** 2 Problem: 4036 3 User: idy002 4 Language: C++ 5 Result: Accepted 6 Time:3584 ms