机器学习深度学习领域参考书 《TensorFlow技术解析与实战》PDF下载

《TensorFlow技术解析与实战》

机器学习深度学习领域参考书 包揽TensorFlow1.1的新特性 人脸识别 语音识别 图像和语音相结合等热点一应俱全 李航 余凯等人工智能领域专家倾力推荐目录第一篇 基础篇

下载地址:https://pan.baidu.com/s/1iKDExWOgCuvxyqsF12abFg
备用地址:https://u1593575.ctfile.com/fs/1593575-330753940

TensorFlow?是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。本书从深度学习的基础讲起,深入TensorFlow框架原理、模型构建、源代码分析和网络实现等各个方面。全书分为基础篇、实战篇和提高篇三部分。基础篇讲解人工智能的入门知识,深度学习的方法,TensorFlow的基础原理、系统架构、设计理念、编程模型、常用API、批标准化、模型的存储与加载、队列与线程,实现一个自定义操作,并进行TensorFlow源代码解析,介绍卷积神经网络(CNN)和循环神经网络(RNN)的演化发展及其TensorFlow实现、TensorFlow的高级框架等知识;实战篇讲解如何用TensorFlow写一个神经网络程序并介绍TensorFlow实现各种网络(CNN、RNN和自编码网络等),并对MINIST数据集进行训练,讲解TensorFlow在人脸识别、自然语言处理、图像和语音的结合、生成式对抗网络等方面的应用;提高篇讲解TensorFlow的分布式原理、架构、模式、API,还会介绍TensorFlow XLA、TensorFlow Debugger、TensorFlow和Kubernetes结合、TensorFlowOnSpark、TensorFlow移动端应用,以及TensorFlow Serving、TensorFlow Fold和TensorFlow计算加速等其他特性。zui后,附录中列出一些可供参考的公开数据集,并结合作者的项目经验介绍项目管理的一些建议。   本书深入浅出,理论联系实际,实战案例新颖,基于zui新的TensorFlow 1.1版本,涵盖TensorFlow的新特性,非常适合对深度学习和TensorFlow感兴趣的读者阅读。

目录
第1章 人工智能概述 2
1.1 什么是人工智能 2
1.2 什么是深度学习 5
1.3 深度学习的入门方法 7
1.4 什么是TensorFlow 11
1.5 为什么要学TensorFlow 12
1.5.1 TensorFlow的特性 14
1.5.2 使用TensorFlow的公司 15
1.5.3 TensorFlow的发展 16
1.6 机器学习的相关赛事 16
1.6.1 ImageNet的ILSVRC 17
1.6.2 Kaggle 18
1.6.3 天池大数据竞赛 19
1.7 国内的人工智能公司 20
1.8 小结 22
第2章 TensorFlow环境的准备 23
2.1 下载TensorFlow 1.1.0 23
2.2 基于pip的安装 23
2.2.1 Mac OS环境准备 24
2.2.2 Ubuntu/Linux环境准备 25
2.2.3 Windows环境准备 25
2.3 基于Java的安装 28
2.4 从源代码安装 29
2.5 依赖的其他模块 30
2.5.1 numpy 30
2.5.2 matplotlib 31
2.5.3 jupyter 31
2.5.4 scikit-image 32
2.5.5 librosa 32
2.5.6 nltk 32
2.5.7 keras 33
2.5.8 tflearn 33
2.6 小结 33
第3章 可视化TensorFlow 34
3.1 PlayGround 34
3.1.1 数据 35
3.1.2 特征 36
3.1.3 隐藏层 36
3.1.4 输出 37
3.2 TensorBoard 39
3.2.1 SCALARS面板 40
3.2.2 IMAGES面板 41
3.2.3 AUDIO面板 42
3.2.4 GRAPHS面板 42
3.2.5 DISTRIBUTIONS面板 43
3.2.6 HISTOGRAMS面板 43
3.2.7 EMBEDDINGS面板 44
3.3 可视化的例子 44
3.3.1 降维分析 44
3.3.2 嵌入投影仪 48
3.4 小结 51
第4章 TensorFlow基础知识 52
4.1 系统架构 52
4.2 设计理念 53
4.3 编程模型 54
4.3.1 边 56
4.3.2 节点 57
4.3.3 其他概念 57
4.4 常用API 60
4.4.1 图、操作和张量 60
4.4.2 可视化 61
4.5 变量作用域 62
4.5.1 variable_scope示例 62
4.5.2 name_scope示例 64
4.6 批标准化 64
4.6.1 方法 65
4.6.2 优点 65
4.6.3 示例 65
4.7 神经元函数及优化方法 66
4.7.1 激活函数 66
4.7.2 卷积函数 69
4.7.3 池化函数 72
4.7.4 分类函数 73
4.7.5 优化方法 74
4.8 模型的存储与加载 79
4.8.1 模型的存储与加载 79
4.8.2 图的存储与加载 82
4.9 队列和线程 82
4.9.1 队列 82
4.9.2 队列管理器 85
4.9.3 线程和协调器 86
4.10 加载数据 87
4.10.1 预加载数据 87
4.10.2 填充数据 87
4.10.3 从文件读取数据 88
4.11 实现一个自定义操作 92
4.11.1 步骤 92
4.11.2 最佳实践 93
4.12 小结 101
第5章 TensorFlow源代码解析 102
5.1 TensorFlow的目录结构 102
5.1.1 contirb 103
5.1.2 core 104
5.1.3 examples 105
5.1.4 g3doc 105
5.1.5 python 105
5.1.6 tensorboard 105
5.2 TensorFlow源代码的学习方法 106
5.3 小结 108
第6章 神经网络的发展及其TensorFlow实现 109
6.1 卷积神经网络 109
6.2 卷积神经网络发展 110
6.2.1 网络加深 111
6.2.2 增强卷积层的功能 115
6.2.3 从分类任务到检测任务 120
6.2.4 增加新的功能模块 121
6.3 MNIST的AlexNet实现 121
6.3.1 加载数据 121
6.3.2 构建网络模型 122
6.3.3 训练模型和评估模型 124
6.4 循环神经网络 125
6.5 循环神经网络发展 126
6.5.1 增强隐藏层的功能 127
6.5.2 双向化及加深网络 129
6.6 TensorFlow Model Zoo 131
6.7 其他研究进展 131
6.7.1 强化学习 132
6.7.2 深度森林 132
6.7.3 深度学习与艺术 132
6.8 小结 133
第7章 TensorFlow的高级框架 134
7.1 TFLearn 134
7.1.1 加载数据 134
7.1.2 构建网络模型 135
7.1.3 训练模型 135
7.2 Keras 135
7.2.1 Keras的优点 136
7.2.2 Keras的模型 136
7.2.3 Keras的使用 137
7.3 小结 141

第二篇 实战篇

第8章 第一个TensorFlow程序 144
8.1 TensorFlow的运行方式 144
8.1.1 生成及加载数据 144
8.1.2 构建网络模型 145
8.1.3 训练模型 145
8.2 超参数的设定 146
8.3 小结 147
第9章 TensorFlow在MNIST中的应用 148
9.1 MNIST数据集简介 148
9.1.1 训练集的标记文件 148
9.1.2 训练集的图片文件 149
9.1.3 测试集的标记文件 149
9.1.4 测试集的图片文件 150
9.2 MNIST的分类问题 150
9.2.1 加载数据 150
9.2.2 构建回归模型 151
9.2.3 训练模型 151
9.2.4 评估模型 152
9.3 训练过程的可视化 152
9.4 MNIST的卷积神经网络 156
9.4.1 加载数据 157
9.4.2 构建模型 157
9.4.3 训练模型和评估模型 159
9.5 MNIST的循环神经网络 161
9.5.1 加载数据 161
9.5.2 构建模型 161
9.5.3 训练数据及评估模型 163
9.6 MNIST的无监督学习 164
9.6.1 自编码网络 164
9.6.2 TensorFlow的自编码网络实现 165
9.7 小结 169
第10章 人脸识别 170
10.1 人脸识别简介 170
10.2 人脸识别的技术流程 171
10.2.1 人脸图像采集及检测 171
10.2.2 人脸图像预处理 171
10.2.3 人脸图像特征提取 171
10.2.4 人脸图像匹配与识别 172
10.3 人脸识别的分类 172
10.3.1 人脸检测 172
10.3.2 人脸关键点检测 173
10.3.3 人脸验证 174
10.3.4 人脸属性检测 174
10.4 人脸检测 175
10.4.1 LFW数据集 175
10.4.2 数据预处理 175
10.4.3 进行检测 176
10.5 性别和年龄识别 178
10.5.1 数据预处理 179
10.5.2 构建模型 181
10.5.3 训练模型 182
10.5.4 验证模型 184
10.6 小结 185
第11章 自然语言处理 186
11.1 模型的选择 186
11.2 英文数字语音识别 187
11.2.1 定义输入数据并预处理数据 188
11.2.2 定义网络模型 188
11.2.3 训练模型 188
11.2.4 预测模型 189
11.3 智能聊天机器人 189
11.3.1 原理 190
11.3.2 最佳实践 191
11.4 小结 200
第12章 图像与语音的结合 201
12.1 看图说话模型 201
12.1.1 原理 202
12.1.2 最佳实践 203
12.2 小结 205
第13章 生成式对抗网络 206
13.1 生成式对抗网络的原理 206
13.2 生成式对抗网络的应用 207
13.3 生成式对抗网络的实现 208
13.4 生成式对抗网络的改进 214
13.5 小结 214

第三篇 提高篇

第14章 分布式TensorFlow 216
14.1 分布式原理 216
14.1.1 单机多卡和分布式 216
14.1.2 分布式部署方式 217
14.2 分布式架构 218
14.2.1 客户端、主节点和工作节点的关系 218
14.2.2 客户端、主节点和工作节点的交互过程 220
14.3 分布式模式 221
14.3.1 数据并行 221
14.3.2 同步更新和异步更新 222
14.3.3 模型并行 224
14.4 分布式API 225
14.5 分布式训练代码框架 226
14.6 分布式最佳实践 227
14.7 小结 235
第15章 TensorFlow线性代数编译框架XLA 236
15.1 XLA的优势 236
15.2 XLA的工作原理 237
15.3 JIT编译方式 238
15.3.1 打开JIT编译 238
15.3.2 将操作符放在XLA设备上 238
15.4 JIT编译在MNIST上的实现 239
15.5 小结 240
第16章 TensorFlow Debugger 241
16.1 Debugger的使用示例 241
16.2 远程调试方法 245
16.3 小结 245
第17章 TensorFlow和Kubernetes结合 246
17.1 为什么需要Kubernetes 246
17.2 分布式TensorFlow在Kubernetes中的运行 247
17.2.1 部署及运行 247
17.2.2 其他应用 253
17.3 小结 254
第18章 TensorFlowOnSpark 255
18.1 TensorFlowOnSpark的架构 255
18.2 TensorFlowOnSpark在MNIST上的实践 257
18.3 小结 261
第19章 TensorFlow移动端应用 262
19.1 移动端应用原理 262
19.1.1 量化 263
19.1.2 优化矩阵乘法运算 266
19.2 iOS系统实践 266
19.2.1 环境准备 266
19.2.2 编译演示程序并运行 267
19.2.3 自定义模型的编译及运行 269
19.3 Android系统实践 273
19.3.1 环境准备 274
19.3.2 编译演示程序并运行 275
19.3.3 自定义模型的编译及运行 277
19.4 树莓派实践 278
19.5 小结 278
第20章 TensorFlow的其他特性 279
20.1 TensorFlow Serving 279
20.2 TensorFlow Flod 280
20.3 TensorFlow计算加速 281
20.3.1 CPU加速 281
20.3.2 TPU加速和FPGA加速 282
20.4 小结 283
第21章 机器学习的评测体系 284
21.1 人脸识别的性能指标 284
21.2 聊天机器人的性能指标 284
21.3 机器翻译的评价方法 286
21.3.1 BLEU 286
21.3.2 METEOR 287
21.4 常用的通用评价指标 287
21.4.1 ROC和AUC 288
21.4.2 AP和mAP 288
21.5 小结 288
附录A 公开数据集 289
附录B 项目管理经验小谈 292

原文地址:http://blog.51cto.com/14166705/2342081

时间: 2024-10-13 00:56:24

机器学习深度学习领域参考书 《TensorFlow技术解析与实战》PDF下载的相关文章

学习TF:《TensorFlow技术解析与实战》PDF+代码

TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一.<TensorFlow技术解析与实战>从深度学习的基础讲起,深入TensorFlow框架原理.模型构建.源代码分析和网络实现等各个方面.分为基础篇.实战篇和提高篇三部分.基础篇讲解人工智能的入门知识,深度学习的方法,TensorFlow的基础原理.系统架构.设计理念.编程模型.常用API.批标准化.模型的存储与加载.队列与线程,实现一个自定义操作,并进行TensorFlow源代码解析,介绍卷积神经网络(CNN)

分享《TensorFlow技术解析与实战》高清中文PDF+源代码

下载:https://pan.baidu.com/s/1jdZ9eSrZ7xnsbbMIUO17qQ <TensorFlow技术解析与实战>高清中文PDF+源代码 高清中文PDF,311页,带目录和书签,文字可以复制粘贴,彩色配图.配套源代码.经典书籍.本书从深度学习的基础讲起,深入TensorFlow框架原理.模型构建.源代码分析和网络实现等各个方面.全书分为基础篇.实战篇和提高篇三部分. 其中,高清中文版如图: 原文地址:http://blog.51cto.com/3215120/2311

Elasticsearch技术解析与实战 PDF (内含目录)

Elasticsearch技术解析与实战 下载地址:https://pan.baidu.com/s/1q46lwAqzbUMs0qbKyBNBqg 关注微信公众号获取提取码: 输入:esjs     获取提取码.                                   介绍: Elasticsearch是一个强[0大0]的搜索引擎,提供了近实时的索引.搜索.分析功能.本书作者根据自己多年的开发经验,总结了使用和开发Elasticsearch的实战经验.本书全面介绍Elasticsea

机器学习&amp;深度学习基础(tensorflow版本实现的算法概述0)

tensorflow集成和实现了各种机器学习基础的算法,可以直接调用. 监督学习 1)决策树(Decision Tree) 决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案. 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).在实际构造决策树时,通常要进行剪枝,这时为了处理由于数据中的噪声和离群点导致的过分拟合问题.剪

《TensorFlow技术解析与实战》高清中文PDF+源代码

下载:https://pan.baidu.com/s/1jdZ9eSrZ7xnsbbMIUO17qQ 高清中文PDF,311页,带目录和书签,文字可以复制粘贴,彩色配图.配套源代码.经典书籍. 本书从深度学习的基础讲起,深入TensorFlow框架原理.模型构建.源代码分析和网络实现等各个方面.全书分为基础篇.实战篇和提高篇三部分. 其中,高清中文版如图: 原文地址:https://www.cnblogs.com/javapythonstudy/p/9886919.html

《Tensorflow技术解析与实战》第四章

Tensorflow基础知识 Tensorflow设计理念 (1)将图的定义和图的运行完全分开,因此Tensorflow被认为是一个"符合主义"的库 (2)Tensorflow中涉及的运算都要放在图中,而图的运行只发生在会话(session)中.开启会话后,就可以用数据去填充节点,进行运算.关闭会话后,就不能继续计算了.因此会话提供了操作运算和Tensor求值的环境 编程模型 边 Tensorflow的边有两种连接关系:数据依赖和控制依赖.其中实线边表示数据依赖,代表数据,即张量.张量

AI全面入门经典书籍-pytho入门+数学+机器学习+深度学习(tensorflow)一次性打包

百度网盘:https://pan.baidu.com/s/1SShwxxBIHB_rynF_jUjApA 一.内容清单: 1..python入门书籍:?? ??? ?python基础教程.pdf?? ??? ?python语言及其应用.pdf?? ??? ?python语言入门.pdf?? ??? ?像计算机科学家一样思考python第2版.pdf ?? ??? ?备注:自己找一本精读,其他辅助阅读,会有不一样的效果.?? ? 2.数学:?? ??? ?同济高等数学 第六版 上册.pdf?? ?

学习笔记TF050:TensorFlow源代码解析

TensorFlow目录结构. ACKNOWLEDGMENTS #TensorFlow版本声明 ADOPTERS.md #使用TensorFlow的人员或组织列表 AUTHORS #TensorFlow作者的官方列表 BUILD CONTRIBUTING.md #TensorFlow贡献指导 ISSUE_TEMPLATE.md #提ISSUE的模板 LICENSE #版权许可 README.md RELEASE.md #每次发版的change log WORKSPACE #配置移动端开发环境 b

[转载]机器学习&amp;深度学习经典资料汇总,全到让人震惊

自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来源:亚马逊  作者: [字体:大 中 小] 小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感