Educational Codeforces Round 5F. Expensive Strings

题意:给n个串ti,ps,i是s在ti中出现的次数,要求找到s,使得\(\sum_{i=1}^nc_i*p_{s,i}*|s|\)最大
题解:sam裸题,每次插入时相当于在fail链上到1的位置加ci,最后统一乘该节点状态的长度,我居然写了个lct维护!= =还wa了....后来发现打个标记topo一下即可

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000009
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}

using namespace std;

const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=600000+10,maxn=1000000+10,inf=0x3f3f3f3f;

char s[N];
vector<char>v[100010];
struct SAM{
    int last,cnt;
    int ch[N<<1][26],fa[N<<1],l[N<<1];
    int a[N<<1],c[N<<1];
    ll sz[N<<1];
    SAM(){cnt=1;}
    void ins(int c,int x){
        if(ch[last][c])
        {
            int p=last,q=ch[last][c];
            if(l[q]==l[p]+1)last=q;
            else
            {
                int nq=++cnt;l[nq]=l[p]+1;
                memcpy(ch[nq],ch[q],sizeof ch[q]);
                fa[nq]=fa[q];fa[q]=last=nq;
                for(;ch[p][c]==q;p=fa[p])ch[p][c]=nq;
            }
            sz[last]+=x;
            return ;
        }
        int p=last,np=++cnt;last=np;l[np]=l[p]+1;
        for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
        if(!p)fa[np]=1;
        else
        {
            int q=ch[p][c];
            if(l[p]+1==l[q])fa[np]=q;
            else
            {
                int nq=++cnt;l[nq]=l[p]+1;
                memcpy(ch[nq],ch[q],sizeof(ch[q]));
                fa[nq]=fa[q];fa[q]=fa[np]=nq;
                for(;ch[p][c]==q;p=fa[p])ch[p][c]=nq;
            }
        }
        sz[np]+=x;
    }
    void build(int id,int x)
    {
        last=1;
        for(int i=0;i<v[id].size();i++)ins(v[id][i]-'a',x);
    }
    void topo()
    {
        for(int i=1;i<=cnt;i++)c[l[i]]++;
        for(int i=1;i<=cnt;i++)c[i]+=c[i-1];
        for(int i=1;i<=cnt;i++)a[c[l[i]]--]=i;
    }
    void cal()
    {
        topo();
        for(int i=cnt;i;i--)sz[fa[a[i]]]+=sz[a[i]];
        ll ans=0;
        for(int i=2;i<=cnt;i++)ans=max(ans,sz[i]*l[i]);
        printf("%lld\n",ans);
    }
}sam;
int main()
{
    int n;scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s);
        for(int j=0;s[j];j++)v[i].pb(s[j]);
    }
    for(int i=1;i<=n;i++)
    {
        int x;scanf("%d",&x);
        sam.build(i,x);
    }
    sam.cal();
    return 0;
}
/********************

********************/

原文地址:https://www.cnblogs.com/acjiumeng/p/10734886.html

时间: 2024-11-26 05:33:35

Educational Codeforces Round 5F. Expensive Strings的相关文章

Educational Codeforces Round 21 G. Anthem of Berland(dp+kmp)

题目链接:Educational Codeforces Round 21 G. Anthem of Berland 题意: 给你两个字符串,第一个字符串包含问号,问号可以变成任意字符串. 问你第一个字符串最多包含多少个第二个字符串. 题解: 考虑dp[i][j],表示当前考虑到第一个串的第i位,已经匹配到第二个字符串的第j位. 这样的话复杂度为26*n*m*O(fail). fail可以用kmp进行预处理,将26个字母全部处理出来,这样复杂度就变成了26*n*m. 状态转移看代码(就是一个kmp

Educational Codeforces Round 26 D. Round Subset(dp)

题目链接:Educational Codeforces Round 26 D. Round Subset 题意: 给你n个数,让你选其中的k个数,使得这k个数的乘积的末尾的0的个数最大. 题解: 显然,末尾乘积0的个数和因子2和因子5的个数有关. 然后考虑dp[i][j]表示选i个数,当前因子5的个数为j时,能得到因子2最多的为多少. 那么对于每个数,记录一下因子2和5的个数,做一些01背包就行了. 1 #include<bits/stdc++.h> 2 #define mst(a,b) me

CodeForces 837F - Prefix Sums | Educational Codeforces Round 26

按tutorial打的我血崩,死活挂第四组- - 思路来自FXXL /* CodeForces 837F - Prefix Sums [ 二分,组合数 ] | Educational Codeforces Round 26 题意: 设定数组 y = f(x) 使得 y[i] = sum(x[j]) (0 <= j < i) 求初始数组 A0 经过多少次 f(x) 后 会有一个元素 大于 k 分析: 考虑 A0 = {1, 0, 0, 0} A1 = {1, 1, 1, 1} -> {C(

Educational Codeforces Round 26 D dp,思维

Educational Codeforces Round 26 D. Round Subset 题意:有 n 个数,从中选出 k 个数,要使这 k 个数的乘积末尾的 0 的数量最多. tags:dp好题 dp[i][j][l] 表示前 i 个数,选取了其中 j 个数,分解因子后有 l 个 5时,最多有多少个 2 .i 这一维明显可以省略. 这题一开始有个地方写挫了..选取 j 个数时,应该反着来,即 for( j, k, 1) ,不是 for( j, 1, k) ,不然会多算. #include

Educational Codeforces Round 23 F. MEX Queries(线段树)

题目链接:Educational Codeforces Round 23 F. MEX Queries 题意: 一共有n个操作. 1.  将[l,r]区间的数标记为1. 2.  将[l,r]区间的数标记为0. 3.  将[l,r]区间取反. 对每个操作,输出标记为0的最小正整数. 题解: hash后,用线段树xjb标记一下就行了. 1 #include<bits/stdc++.h> 2 #define ls l,m,rt<<1 3 #define rs m+1,r,rt<&l

Educational Codeforces Round 23 D. Imbalanced Array(单调栈)

题目链接:Educational Codeforces Round 23 D. Imbalanced Array 题意: 给你n个数,定义一个区间的不平衡因子为该区间最大值-最小值. 然后问你这n个数所有的区间的不平衡因子和 题解: 对每一个数算贡献,a[i]的贡献为 当a[i]为最大值时的 a[i]*(i-l+1)*(r-i+1) - 当a[i]为最小值时的a[i]*(i-l+1)*(r-i+1). 计算a[i]的l和r时,用单调栈维护.具体看代码,模拟一下就知道了. 然后把所有的贡献加起来.

Educational Codeforces Round 25 F. String Compression(kmp+dp)

题目链接:Educational Codeforces Round 25 F. String Compression 题意: 给你一个字符串,让你压缩,问压缩后最小的长度是多少. 压缩的形式为x(...)x(...)  x表示(...)这个出现的次数. 题解: 考虑dp[i]表示前i个字符压缩后的最小长度. 转移方程解释看代码,这里要用到kmp来找最小的循环节. 当然还有一种找循环节的方式就是预处理lcp,然后通过枚举循环节的方式. 这里我用的kmp找的循环节.复杂度严格n2. 1 #inclu

Educational Codeforces Round 23 E. Choosing The Commander (trie)

题目链接: Educational Codeforces Round 23 E. Choosing The Commander 题意: 一共有n个操作. 1.  插入一个数p 2.  删除一个数p 3.  询问有多少个数 使得 x^p<l 题解: 对于前两种操作用01trie就能解决. 对于对三个操作,我们考虑在trie上搜索. 1.  当l的bit位是1时,那边bit位是p的字数全部的数都会小于l,(因为p^p=0) 2.  当l的bit为是0时,那边只能向bit位是p的子树中搜. 这样算下来

CodeForces - 837E - Vasya&#39;s Function | Educational Codeforces Round 26

/* CodeForces - 837E - Vasya's Function [ 数论 ] | Educational Codeforces Round 26 题意: f(a, 0) = 0; f(a, b) = 1 + f(a, b-gcd(a, b)); 求 f(a, b) , a,b <= 1e12 分析: b 每次减 gcd(a, b) 等价于 b/gcd(a,b) 每次减 1 减到什么时候呢,就是 b/gcd(a,b)-k 后 不与 a 互质 可先将 a 质因数分解,b能除就除,不能