Pythn 使用进程池Pool进行并发编程

进程池Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

# -*- coding:utf-8 -*-
from multiprocessing import Pool
import os, time, random

def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg,os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2)
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))

po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
    #Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    #每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))

print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

ultiprocessing.Pool常用函数解析:

  • apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
  • close():关闭Pool,使其不再接受新的任务;
  • terminate():不管任务是否完成,立即终止;
  • join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

# -*- coding:utf-8 -*-

# 修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random

def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))

def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "itcast":
        q.put(i)

if __name__=="__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    # 使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

原文地址:https://www.cnblogs.com/lowmanisbusy/p/10259235.html

时间: 2024-10-12 18:37:10

Pythn 使用进程池Pool进行并发编程的相关文章

Python多进程并发操作中进程池Pool的应用

  在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了.      Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满, 那么就会创建一个新的进程用来执行该请求:但如果池中的进

进程池Pool

进程池Pool 当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法. 初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求:但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行,请看下面的实例

python 进程池pool简单使用

平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘__main__’ :语句的下面,才能正常使用Windows下的进程模块.Unix/Linux下则不需要. Pool类 Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求.如果池满,请求就会告知先等待,直到池中有进程结束, 才会

第35篇 进程之间的通信 Queue Pipe 进程池Pool,p.apply()方法,p.apply_async()方法

内容大纲: 进程之间的通讯 进程队列 管道 进程之间的数据共享 进程池 使用进程池 开启进程 提交任务 获得返回值 回调函数1.进程队列 先进先出 from multiprocessing import Queue import queue q = Queue() q.put(1) q.put(2) q.put(3) print(q.get()) print(q.get()) print(q.get()) 1 2 3 from multiprocessing import Queue impor

PYTHON多进程编码结束之进程池POOL

结束昨晚开始的测试. 最后一个POOL. A,使用POOL的返回结果 #coding: utf-8 import multiprocessing import time def func(msg): print 'msg:', msg time.sleep(3) print 'end' return 'done', msg if __name__ == '__main__': pool = multiprocessing.Pool(processes=3) result = [] for i i

python进程之间修改数据[Manager]与进程池[Pool]

#前面的队列Queue和管道Pipe都是仅仅能再进程之间传递数据,但是不能修改数据,今天我们学习的东西就可以在进程之间同时修改一份数据 #Mnager就可以实现 import multiprocessing import random def f(l,n): l.append(n) if __name__ == '__main__': m = multiprocessing.Manager() m_dict = m.dict() m_list = m.list(range(4)) p_list

进程池(Pool)

进程池用于进程维护, 当使用时,将会去进程池取数据 from multiprocessing import Pool, Processimport os, time def f(i): time.sleep(2) print('in process', os.getpid()) #os.getpid()获得进程序列号 return i+100 def Bar(arg): print('exec done--', arg, os.getpid()) if __name__ == '__main__

进程,操作系统,Python并发编程之多进程

1.进程基础知识 1.程序:若干文件 2.进程:一个正在执行的文件,程序 3.进程被谁执行:cpu最终运行指定的程序 4.操作系统调度作用:将磁盘上的程序加载到内存,然后交由CPU去处理,一个CPU正在运行的一个程序,就叫开启了一个进程 2.操作系统 1.操作系统:存在于硬盘与软件之间,管理.协调.控制软件与硬件的交互 2.操作系统的作用:将一些复杂的硬件封装成简单的借口,便于使用;合理地调度分配多个进程与cpu的关系,让其有序化 3.操作系统发展史 ①第一代电子计算机(1940-1955) 二

python 进程池Pool

1 #-*- coding:utf-8 -*- 2 from multiprocessing import Pool 3 import os,time,random 4 5 def long_time_task(name): 6 print 'Run task name %s and pid : %s..'%(name,os.getpid()) 7 start = time.time() 8 time.sleep(random.random()*3) 9 end = time.time() 10