巴仕博弈 + 威佐夫博弈

既然会了尼姆博弈和SG函数,那么巴仕博弈和威佐夫博奕照理说应该是不在话下了

巴什博奕:

两个顶尖聪明的人在玩游戏,有n个石子,每人可以随便拿1到m个石子,不能拿的人为败者,问谁会胜利

巴什博奕是博弈论问题中基础的问题

它是最简单的一种情形对应一种状态的博弈

博弈分析

如果有m+1个石子,那么先手必定无法取完全部,但后手可以取完剩下的部分,使得先手没有石子可以取,那么这个时候先手必败,

那么假设石子总数为(m+1)*r+n,r,n都为自然数,且n<m+1,那么如果我们先手,当r≠0时,我们只需要取走n个石子,那么剩下的是(m+1)*r个石子,那么无论对手如何取,我们只需取走和和他取走数和为m+1的石子数就可保证必胜,

若是n=0,那么我们相当于前面一种情况的后手,即为必败态

例题:http://acm.hdu.edu.cn/showproblem.php?pid=1846

题意:裸巴仕博弈

代码:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 int main()
 4 {
 5     int t;
 6     cin>>t;
 7     while(t--)
 8     {
 9         int n,m;
10         cin>>n>>m;
11         if(n%(m+1))
12             cout<<"first"<<endl;
13         else
14             cout<<"second"<<endl;
15     }
16     return 0;
17 }

威佐夫博奕:

有两堆各若干个物品,两个人轮流从任一堆取至少一个或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

我们可以用SG函数来判断胜负,但是让我们从正面出发去解解看

1,我们用(a[k],b[k])(a[k] ≤ b[k] ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势。

2,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。

3,奇异局(举例)

首先列举人们已经发现的前几个奇异局势:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)

(8,13)、(9,15)、(11,18)、(12,20)。

通过观察发现:a[0]=b[0]=0,a[k]是未在前面出现过的最小自然数,而 b[k]= a[k] + k。

4,奇异局势有如下三条性质:

1)任何自然数都包含且仅包含在一个奇异局势中。

2)任意操作都可以使奇异局势变为非奇异局势。

3)必有一种操作可以使非奇异局势变为奇异局势。

5,奇异局势公式:

a[k]=[k*(1+√5)/2],b[k]=a[k]+k。

(k=0,1,2......,[ ]表示取整)

有趣的是,式中的(1+√5)/2正是黄金分割比例。

HDU-1527(取石子游戏) http://acm.hdu.edu.cn/showproblem.php?pid=1527

题意:威佐夫博弈

 1 //HDU-1527(威佐夫博弈取石子游戏)
 2 #include<bits/stdc++.h>
 3 using namespace std;
 4 typedef long long ll;
 5 int main()
 6 {
 7     ll n,m;
 8     while(cin>>n>>m)
 9     {
10         if(n>m)
11         swap(n,m);
12         double r=(sqrt(5.0)+1)/2;
13         if(n==(ll)((m-n)*r))
14         cout<<0<<endl;
15         else
16         cout<<1<<endl;
17     }
18     return 0;
19  } 

原文地址:https://www.cnblogs.com/graytido/p/10776628.html

时间: 2024-11-10 15:15:25

巴仕博弈 + 威佐夫博弈的相关文章

【博弈论】威佐夫博弈

威佐夫博弈     威佐夫博弈:有两堆石子,每次一个人可以两堆同时取相同数量的石子,也可以只取其中一堆的石子,最后谁取完谁获胜,请问先手还是后手胜? 对于学过一些博弈论基础的来说,我们需要找到那些能让先手必输的局势,那么由这些局势在规定范围内拓展的局势也是先手必输的局势(但在这里双方自由选取,不适用).我们可以得出一些局势使A必输:(0,0) (1,2) (3,5) (4,7) (6,10) (8,13) (9,15) (11,18) (12,20)……我们称这些局势为奇异局势 不难发现,如果我

巴什博弈、威佐夫博弈、尼姆博弈

取石子问题 [转]ACM取石子游戏 有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可.两个人轮流从堆中取物体若干,规定最后取光物体者取胜.这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理.下面我们来分析一下要如何才能够取胜. (一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜. 显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次

基础博弈——威佐夫与尼姆不得不说的那些事

STEP1:首先了解规则与概念 威佐夫博弈(Wythoff's game):有两堆各若干个物品,两个人轮流从任一堆取至少一个或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 尼姆博弈(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 要注意,在威佐夫博弈中,玩家可以选择操作两堆物品,而在尼姆博弈中,只能对任意一堆物品进行操作. STEP2:了解奇异局势 Q:什么是局势与奇异局势? A:局势就是指

POJ 1067——威佐夫博弈

题目: Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000. Output 输出

HDU 2177——威佐夫博弈

题目: Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子? Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,

HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏 题意:中文 思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立 以下转自网上某总结 有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,-,n 方括号表示取整函数) 其中出现了黄金分割数(1+√5)/2 = 1.618-,因此,由ak,bk组成的矩形近似为黄金矩形 由于2/(1+√5)=(√5-1)/2,可以先

威佐夫博弈模板

威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. //威佐夫博奕:有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. //输入:两堆大小 //返回:0表示必败,1表示必胜 bool Wythoff(int n,int m) { if(n<m) swap(n,m); int k=n-m; n=(int)(k*(1+sqrt(5))

poj1067-取石子游戏 (威佐夫博弈) 【博弈】

http://poj.org/problem?id=1067 取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36753   Accepted: 12446 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如

取(2堆)石子游戏(威佐夫博弈+hdu2177)

T - 取(2堆)石子游戏 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 2177 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,