吴裕雄 python深度学习与实践(6)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
import numpy as np

filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")
summary = dataFile.describe()
dataFileNormalized = dataFile.iloc[:,1:6]
for i in range(1,6):
    mean = summary.iloc[1, i]
    sd = summary.iloc[2, i]
    dataFileNormalized.iloc[:,(i-1)] = (dataFileNormalized.iloc[:,(i-1)] - mean) / sd
array = dataFileNormalized.values
print(np.shape(array))
boxplot(array)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
filePath = ("c://dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")                

summary = dataFile.describe()
minRings = -1
maxRings = 99
nrows = 10
for i in range(nrows):
    dataRow = dataFile.iloc[i,1:10]
    labelColor = (dataFile.iloc[i,10] - minRings) / (maxRings - minRings)
    dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()            

import numpy as np
from pylab import *
import pandas as pd
import matplotlib.pyplot as plot

filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")

corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr())
plot.pcolor(corMat)
plot.show()
print(np.shape(corMat))
print(corMat)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot

filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath)
summary = dataFile.describe()
print(summary)

array = dataFile.iloc[:,1:13].values
boxplot(array)
plot.xlabel("month")
plot.ylabel("rain")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot

filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath)

minRings = -1
maxRings = 99
nrows = 12
for i in range(nrows):
    dataRow = dataFile.iloc[i,1:13]
    labelColor = (dataFile.iloc[i,12] - minRings) / (maxRings - minRings)
    dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot

filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath)

corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr())

plot.pcolor(corMat)
plot.show()

原文地址:https://www.cnblogs.com/tszr/p/10354719.html

时间: 2024-11-06 09:49:28

吴裕雄 python深度学习与实践(6)的相关文章

吴裕雄 python深度学习与实践(1)

#coding = utf8 import threading,time count = 0 class MyThread(threading.Thread): def __init__(self,threadName): super(MyThread,self).__init__(name = threadName) def run(self): global count for i in range(100): count = count + 1 time.sleep(0.3) print(

吴裕雄 python深度学习与实践(2)

#coding = utf8 import threading,time,random count = 0 class MyThread (threading.Thread): def __init__(self,lock,threadName): super(MyThread,self).__init__(name = threadName) self.lock = lock def run(self): global count self.lock.acquire() for i in ra

吴裕雄 python深度学习与实践(3)

import threading, time def doWaiting(): print('start waiting:', time.strftime('%S')) time.sleep(3) print('stop waiting', time.strftime('%S')) thread1 = threading.Thread(target = doWaiting) thread1.start() time.sleep(1) #确保线程thread1已经启动 print('start j

吴裕雄 python深度学习与实践(4)

import numpy,math def softmax(inMatrix): m,n = numpy.shape(inMatrix) outMatrix = numpy.mat(numpy.zeros((m,n))) soft_sum = 0 for idx in range(0,n): outMatrix[0,idx] = math.exp(inMatrix[0,idx]) soft_sum += outMatrix[0,idx] for idx in range(0,n): outMat

吴裕雄 python深度学习与实践(5)

import numpy as np data = np.mat([[1,200,105,3,False], [2,165,80,2,False], [3,184.5,120,2,False], [4,116,70.8,1,False], [5,270,150,4,True]]) row = 0 for line in data: row += 1 print(row) print(data.size) import numpy as np data = np.mat([[1,200,105,3

吴裕雄 python深度学习与实践(7)

import cv2 import numpy as np img = np.mat(np.zeros((300,300))) cv2.imshow("test",img) cv2.waitKey(0) import cv2 import numpy as np img = np.mat(np.zeros((300,300),dtype=np.uint8)) cv2.imshow("test",img) cv2.waitKey(0) import cv2 impor

吴裕雄 python深度学习与实践(8)

import cv2 import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg") img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) turn_green_hsv = img_hsv.copy() turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] - 30 ) % 180 tur

吴裕雄 python深度学习与实践(10)

import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print(input2) input2 = input1 sess = tf.Session() print(sess.run(input2)) import tensorflow as tf input1 = tf.placeholder(tf.int32) input2 = tf.placeholder

吴裕雄 python深度学习与实践(11)

import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6]]) B = A.T.dot(C) AA = np.linalg.inv(A.T.dot(A)) l=AA.dot(B) P=A.dot(l) x=np.linspace(-2,2,10) x.shape=(1,10) xx=A.dot(x) fig = plt.figure() ax= fig.