03-树1. 二分法求多项式单根

二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。

检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a, (a+b)/2],令b=(a+b)/2,重复循环;
本题目要求编写程序,计算给定3阶多项式f(x)=a3x3+a2x2+a1x+a0在给定区间[a, b]内的根。

输入格式:

输入在第1行中顺序给出多项式的4个系数a3、a2、a1、a0,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。

12345
输入样例:3 -1 -3 1-0.5 0.5输出样例:0.33
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
#include <iostream>#include <cmath>#include <iomanip>using namespace std;

double (double a3, double a2, double a1, double a0, double val){    return a3 * pow(val,3.0) + a2 * pow(val,2.0) + a1 * pow(val,1.0) + a0;}void BinarySearch(double a, double b,double a3, double a2, double a1, double a0){    double beg = a, end = b;    double mid = .0;    double midResult = .0, begResult = .0, endResult = .0;    begResult = Compute(a3, a2, a1, a0, beg);    endResult = Compute(a3, a2, a1, a0, end);    while(begResult * endResult <= 0 )    {        mid = (beg + end) / 2.0;        midResult = Compute(a3, a2, a1, a0, mid);        if( abs(midResult) < 0.0001)        {            cout << setiosflags(ios::fixed) << setprecision(2) << mid << endl;            break;        }        else if(midResult * begResult > 0)        {            beg = mid;        }        else        {            end = mid;        }        begResult = Compute(a3, a2, a1, a0, beg);        endResult = Compute(a3, a2, a1, a0, end);    }}

int main(){    double a3 = 0, a2 = 0, a1 = 0, a0 = 0;    double  a = 0, b = 0;    cin >> a3 >> a2 >> a1 >> a0        >> a >> b;    BinarySearch(a, b, a3, a2, a1, a0);    return 0;}

刚开始代码总是在第3个测试点过不了,搞了半天也不对,后来将if( abs(midResult) < 0.001)改为if( abs(midResult) < 0.0001)就通过了,估计是精度不够高,当然结题思路和题目给的条件有点偏差,题目说的是“检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;”我把它改成了求出来的值的绝对值小于0.0001即可。虽然测试点能过,但是有点不合题意。

原文:大专栏  03-树1. 二分法求多项式单根

原文地址:https://www.cnblogs.com/wangziqiang123/p/11632026.html

时间: 2024-10-03 23:04:21

03-树1. 二分法求多项式单根的相关文章

中国大学MOOC-陈越、何钦铭-数据结构基础习题集 03-1. 二分法求多项式单根

03-1. 二分法求多项式单根(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 杨起帆(浙江大学城市学院) 二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如

循环-08. 二分法求多项式单根(20)

1 #include<iostream> 2 #include<cmath> 3 #include<iomanip> 4 using namespace std; 5 double a3,a2,a1,a0; 6 double f(double x){ 7 return a3*pow(x,3)+a2*pow(x,2)+a1*x+a0; 8 } 9 int main(){ 10 double a,b,t=0.001; 11 cin>>a3>>a2&g

二分法求多项式单根

<pre name="code" class="cpp">/* 二分法求多项式单根(20) 二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号, 即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如果f((a+b)/2)正好为0,则(

*循环-08. 二分法求多项式单根

1 /* 2 * Main.c 3 * C8-循环-08. 二分法求多项式单根 4 * Created on: 2014年7月26日 5 * Author: Boomkeeper 6 *****部分通过******** 7 */ 8 #include <stdio.h> 9 #include <math.h> 10 11 float a3 = 0, a2 = 0, a1 = 0, a0 = 0; 12 13 double func(double x) { 14 return (a3

03-1. 二分法求多项式单根

二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环:

03-1. 二分法求多项式单根(PAT)

二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环:

PAT03-1. 二分法求多项式单根(20)

链接:点击打开链接 题意: 二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=

PAT-《C/C++/Java/Pascal 程序设计基础》习题集-循环-08(MOOC3-1)二分法求多项式单根

首先粘一下题目: 二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则如果f(a)f(b)<0,则计算中点的值f((a+b)/2):如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,

PAT - JAVA-5-18 二分法求多项式单根 (20分)

二分法求函数根的原理为:如果连续函数f(x)f(x)在区间[a, b][a,b]的两个端点取值异号,即f(a)f(b)<0f(a)f(b)<0,则它在这个区间内至少存在1个根rr,即f(r)=0f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2(a+b)/2:否则 如果f(a)f(b)<0f(a)f(b)<0,则计算中点的值f((a+b)/2)f((a+b)/2): 如果f((a+b)/2)f((a+b)/2)正好为0,则(a+b)