C++11 std::unique_lock与std::lock_guard区别及多线程应用实例

C++11 std::unique_lock与std::lock_guard区别及多线程应用实例

C++多线程编程中通常会对共享的数据进行写保护,以防止多线程在对共享数据成员进行读写时造成资源争抢导致程序出现未定义的行为。通常的做法是在修改共享数据成员的时候进行加锁--mutex。在使用锁的时候通常是在对共享数据进行修改之前进行lock操作,在写完之后再进行unlock操作,进场会出现由于疏忽导致由于lock之后在离开共享成员操作区域时忘记unlock,导致死锁。

针对以上的问题,C++11中引入了std::unique_lock与std::lock_guard两种数据结构。通过对lock和unlock进行一次薄的封装,实现自动unlock的功能。

std::mutex mut;

void insert_data()
{
       std::lock_guard<std::mutex> lk(mut);
       queue.push_back(data);
}

void process_data()
{
       std::unqiue_lock<std::mutex> lk(mut);
       queue.pop();
}

std::unique_lock 与std::lock_guard都能实现自动加锁与解锁功能,但是std::unique_lock要比std::lock_guard更灵活,但是更灵活的代价是占用空间相对更大一点且相对更慢一点。

通过实现一个线程安全的队列来说明两者之间的差别。

template <typename T>
class ThreadSafeQueue{
public:
         void Insert(T value);
         void Popup(T &value);
         bool Empety();

private:
       mutable std::mutex mut_;
       std::queue<T> que_;
       std::condition_variable cond_;
};
template <typename T>
void ThreadSafeQueue::Insert(T value){
    std::lock_guard<std::mutex> lk(mut_);
    que_.push_back(value);
    cond_.notify_one();
}

template <typename T>
void ThreadSafeQueue::Popup(T &value){
    std::unique_lock<std::mutex> lk(mut_);
    cond_.wait(lk, [this]{return !que_.empety();});
    value = que_.front();
    que_.pop();
}

template <typename T>
bool ThreadSafeQueue::Empty() const{
        std::lock_guard<std::mutex> lk(mut_);
        return que_.empty();
}
上面代码只实现了关键的几个函数,并使用了C++11新引入的condition_variable条件变量。从Popup与Inert两个函数看std::unique_lock相对std::lock_guard更灵活的地方在于在等待中的线程如果在等待期间需要解锁mutex,并在之后重新将其锁定。而std::lock_guard却不具备这样的功能。
上面代码中
cond_.wait(lk, [this]{return !Empety();});

是C++11新引入的功能,lambda表达式,是一种匿名函数。方括号内表示捕获变量。当lambda表达式返回true时(即queue不为空),wait函数会锁定mutex。当lambda表达式返回false时,wait函数会解锁mutex同时会将当前线程置于阻塞或等待状态。

还存在另一种读写锁,但是并没有引入C++11,但是boost库提供了对应的实现。读写锁主要适合在于共享数据更新频率较低,但是读取共享数据频率较高的场合。

原文地址:https://www.cnblogs.com/leijiangtao/p/12045878.html

时间: 2024-10-10 18:44:28

C++11 std::unique_lock与std::lock_guard区别及多线程应用实例的相关文章

std::unique_lock与std::lock_guard分析

背景 C++多线程编程中通常会对共享的数据进行写保护,以防止多线程在对共享数据成员进行读写时造成资源争抢,导致程序出现未定义或异常行为.通常的做法是在修改共享数据成员时进行加锁(mutex).在使用锁时通常是在对共享数据进行修改之前进行lock操作,在写完之后再进行unlock操作,但经常会出现lock之后离开共享成员操作区域时忘记unlock导致死锁的现象.针对以上的问题,C++11中引入了std::unique_lock与std::lock_guard两种数据结构.通过对lock和unloc

[C++11 并发编程] 08 - Mutex std::unique_lock

相对于std::lock_guard来说,std::unique_lock更加灵活,std::unique_lock不拥有与其关联的mutex.构造函数的第二个参数可以指定为std::defer_lock,这样表示在构造unique_lock时,传入的mutex保持unlock状态.然后通过调用std::unique_lock对象的lock()方法或者将将std::unique_lock对象传入std::lock()方法来锁定mutex. #include <mutex> class some

基于std::mutex std::lock_guard std::condition_variable 和std::async实现的简单同步队列

C++多线程编程中通常会对共享的数据进行写保护,以防止多线程在对共享数据成员进行读写时造成资源争抢导致程序出现未定义的行为.通常的做法是在修改共享数据成员的时候进行加锁--mutex.在使用锁的时候通常是在对共享数据进行修改之前进行lock操作,在写完之后再进行unlock操作,进场会出现由于疏忽导致由于lock之后在离开共享成员操作区域时忘记unlock,导致死锁. 针对以上的问题,C++11中引入了std::unique_lock与std::lock_guard两种数据结构.通过对lock和

【转】C++11 并发指南五(std::condition_variable 详解)

http://www.cnblogs.com/haippy/p/3252041.html 前面三讲<C++11 并发指南二(std::thread 详解)>,<C++11 并发指南三(std::mutex 详解)>分别介绍了 std::thread,std::mutex,std::future 等相关内容,相信读者对 C++11 中的多线程编程有了一个最基本的认识,本文将介绍 C++11 标准中 <condition_variable> 头文件里面的类和相关函数. &l

C++11 并发指南三(std::mutex 详解)

C++11 并发指南三(std::mutex 详解) 上一篇<C++11 并发指南二(std::thread 详解)>中主要讲到了 std::thread 的一些用法,并给出了两个小例子,本文将介绍 std::mutex 的用法. Mutex 又称互斥量,C++ 11中与 Mutex 相关的类(包括锁类型)和函数都声明在 <mutex> 头文件中,所以如果你需要使用 std::mutex,就必须包含 <mutex> 头文件. <mutex> 头文件介绍 Mu

c++11特性与cocos2d-x 3.0之std::bind与std::function

昨天同事让帮忙写一小功能,才发现cocos2d-x 3.0 和 cocos2d-x 3.0rc0 差别还是相当大的. 发现Label这一个控件,3.0就比rc0版本多了一个创建函数,更为关键的是3.0内的Label锚点是在ccp(0.5,0.5),而一直3.0rc0是ccp(0,0). 累觉不爱.尽管cocos2d-x改变太快,兼容性一次次的暴露出不足,但是,总归是向好的方向进行.于是下载了3.0来玩玩~ cocos new 出新的项目之后,仔细阅读代码,才发现了一句3.0区别于2.0的代码:

使用std::lock 和 std::unique_lock来起先swap操作

在上面代码中std::unique_lock可以传进std::lock,因为std::unique_lock有unique_lock提借lock.try_lock.unlock成员函数. std::unique_lock有一个owner_lock函数来判断是否现在已经被锁定.你可以会说使用std::lock_guard可能稍微效率一点.但是std::unique_lock使用可以更灵活,一是可以延迟锁定,二是可以将lock的所有权传送给另一个scope. 原文地址:https://www.cnb

C++11新特性之 std::array container

数组每个人都很熟悉,vector更是我们常常用到的. 但是某些场合,使用vector是多余的,尤其能明确元素个数的情况下,这样我们就付出了效率稍低的代价! 但是你使用数组的代价是那么的不安全,那么的不方便. 于是,C++11推出了模板类array,位于std名称控件中. 与vector不同的是,array对象的长度是固定的,使用了静态存储区,即存储在栈上,效率跟数组相同,但是更加的安全. 首先需要包含头文件array,而且语法与vector也有所不同: #include<array> ...

C++11学习笔记:std::move和std::forward源码分析

std::move和std::forward是C++0x中新增的标准库函数,分别用于实现移动语义和完美转发. 下面让我们分析一下这两个函数在gcc4.6中的具体实现. 预备知识 引用折叠规则: X& + & => X& X&& + & => X& X& + && => X& X&& + && => X&& 函数模板参数推导规则(右值引用参数部分):