大意: 一个$k$层完全二叉树, 每个节点向它祖先连边, 就得到一个$k$房子, 求$k$房子的所有简单路径数.
$DP$好题.
首先设$dp_{i,j}$表示$i$房子, 分出$j$条简单路径的方案数, 那么最终答案就为$dp_{i,1}$.
考虑两棵$i-1$房子转移到$i$房子的情况, 分四种情况.
- 两个子树间不与根节点连边, 那么$dp_{i,j+k}=\sum dp_{i-1,j}dp_{i-1,k}$
- 两个子树只有一条路径与根节点连边, $dp_{i,j+k}=\sum dp_{i-1,j}dp_{i-1,k} 2(j+k)$
- 两个子树有两条路径与根节点连边, $dp_{i,j+k-1}=\sum dp_{i-1,j}dp_{i-1,k} (j+k)(j+k-1)$
- 两个子树间不与根节点连边, 根节点单独作为一条路径, $dp_{i,j+k+1}=\sum dp_{i-1,j}dp_{i-1,k}$
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ‘\n‘ #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<‘,‘;hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<‘0‘||p>‘9‘)p=getchar();while(p>=‘0‘&&p<=‘9‘)x=x*10+p-‘0‘,p=getchar();return x;} //head const int N = 510; int n, dp[N][N]; void add(int &x, ll y) {x=(x+y)%P;} int main() { scanf("%d", &n); dp[1][1] = dp[1][0] = 1; REP(i,2,n) { REP(j,0,n) if (dp[i-1][j]) { REP(k,0,n-j) if (dp[i-1][k]) { ll t = (ll)dp[i-1][j]*dp[i-1][k]%P; add(dp[i][j+k],t); add(dp[i][j+k],t*2*(j+k)); if (j+k) add(dp[i][j+k-1],t*(j+k)*(j+k-1)); add(dp[i][j+k+1],t); } } } printf("%d\n", dp[n][1]); }
原文地址:https://www.cnblogs.com/uid001/p/11618571.html
时间: 2024-10-27 14:53:32