提升树之Adaboost算法的介绍

主要内容:

  1. 模型介绍
  2. 损失函数的介绍
  3. Adaboost分类算法步骤
  4. Adaboost回归算法步骤
  5. Adaboost函数语法
  6. 提升树之Adaboost算法的应用——信用卡是否违约的识别

1.模型介绍

提升树算法与线性回归模型的思想类似,所不同的是该算法实现了多棵基础决策树??(??)的加权运算,最具代表的提升树为AdaBoost算法,即

2.损失函数的介绍

对于Adaboost算法而言,每一棵基础决策树都是基于前一棵基础决策树的分类结果对样本点设置不同的权重,如果在前一棵基础决策树中将某样本点预测错误,就会增大该样本点的权重,否则会相应降低样本点的权重,进而再构建下一棵基础决策树,更加关注权重大的样本点。

所以,AdaBoost算法需要解决三大难题,即样本点的权重??????如何确定、基础决策树??(??)如何选择以及每一棵基础决策树所对应的权重????如何计算。

3.Adaboost分类算法步骤

4.Adaboost回归算法步骤

5.Adaboost函数语法

6.提升树之Adaboost算法的应用——信用卡是否违约的识别

数据集下载(下载后需要把第一行删除!):https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

全部源代码为:

代码参考博客:https://www.cnblogs.com/tszr/p/10060935.html

原文地址:https://www.cnblogs.com/HuangYJ/p/11768311.html

时间: 2024-10-02 09:41:34

提升树之Adaboost算法的介绍的相关文章

提升方法 - 1 - Adaboost 算法

声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 概述 一句话概述Adaboost算法的话就是:把多个简单的分类器结合起来形成个复杂的分类器.也就是&qu

04-05 提升树

[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 提升树 提升树(boosting tree)是以分类树或回归树作为弱学习器的强学习器. 提升树模型用的是加法模型,算法用的是前向分步算法,弱学习器是决策树的集成学习方法. 一.提升树学习目标 加法模型 前向分步算法 提升树与AdaBoost算法 回归提升树流程 提升树优缺点 二.提升树引入 假设Nick的年龄

图像算法研究---Adaboost算法详解

本篇文章先介绍了提升放法和AdaBoost算法.已经了解的可以直接跳过.后面给出了AdaBoost算法的两个例子,附有详细计算过程. 1.提升方法(来源于统计学习方法) 提升方法是一种常用的统计学习方法,应用十分广泛且有效.在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能.提升算法基于这样一种思路:对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断好.实际上,就是"三个臭皮匠顶个诸葛亮"的道

图像算法研究---Adaboost算法具体解释

本篇文章先介绍了提升放法和AdaBoost算法.已经了解的可以直接跳过.后面给出了AdaBoost算法的两个样例.附有详细计算过程. 1.提升方法(来源于统计学习方法) 提升方法是一种经常使用的统计学习方法,应用十分广泛且有效.在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能. 提升算法基于这样一种思路:对于一个复杂任务来说,将多个专家的推断进行适当的综合所得出的推断.要比当中不论什么一个专家单独的推断好. 实际上.就是"三个臭皮匠顶个诸葛亮&q

集成学习之梯度提升树(GBDT)算法

梯度提升树(GBDT)的全称是Gradient Boosting Decision Tree.GBDT还有很多的简称,例如GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ),GBRT(Gradient Boosting Regression Tree), MART(Multiple Additive Regression Tree)等,其实都是指的同一种算法,本文统一简称GBDT. GBDT 也是 Boosting 算法的一种,但是

统计学习方法--提升方法adaBoost算法(集成学习)

1.主要内容 介绍集成学习,然后讲述boosting和bagging的区别与联系,同时对adaBoost进行推导然后进行gbdt的推导,最后比较随机森林和gdbt的区别和联系. 2.集成学习 集成学习(ensamble learning)通过构建多个学习器来完成任务.集成学习的一般结构:先产生一组"个体学习器",然后再用某种策略将这些个体学习器进行联系起来,个体学习器由现有的一个算法产生,比如说c4.5决策树,bp神经网络等.根据集成学习中个体学习器是否相同可以分为同质集成和已质集成,

提升方法 - 2 - 前向分布算法和提升树

声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 上一节讲解了Adaboost算法,下面我们要通过Adaboost的另一种解释引申到前向分布算法,进而通过

AdaBoost 人脸检测介绍(3) : AdaBoost算法流程

本系列文章总共有七篇,目录索引如下: AdaBoost 人脸检测介绍(1) : AdaBoost身世之谜 AdaBoost 人脸检测介绍(2) : 矩形特征和积分图 AdaBoost 人脸检测介绍(3) : AdaBoost算法流程 AdaBoost 人脸检测介绍(4) : AdaBoost算法举例 AdaBoost 人脸检测介绍(5) : AdaBoost算法的误差界限 AdaBoost 人脸检测介绍(6) : 使用OpenCV自带的 AdaBoost程序训练并检测目标 AdaBoost 人脸

机器学习(七)—Adaboost 和 梯度提升树GBDT

1.Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络.对于决策树,Adaboost分类用了CART分类树,而Adaboost回归用了CART回归树. Adaboost算法可以简述为三个步骤: (1)首先,是初始化训练数据的权值分布D1.假设有N个训练样本数据,则每一个训练样本最开始时,都被赋予相同的权值:w1=1/N. (2)然后,训练弱分类器hi.具体训练过程中是:如果某个训练样本点,被弱分类器h