PID通俗理解

PID:即比例积分微分反馈调节。

学习PID总是有各种各样的问题。后来看了各种书,网上请教了不少人,还是一头雾水,知道这个东西,但是它是怎么工作的呢?比例积分微分是怎么配合的呢?

我们假如有一杯水,水里加一个加热器,我们可以控制加热器的电流来保持水温恒定,如果水温没有任何加热条件下为30度,现在我在水里加一加热器,那么我要保持35度,加热器就要供电。如果用比例控制的话,刚开始温度相差最大,加热器电流最大,到最后温度相差减小,加热器电流就会减小,但是不会加热到35度,这样就会一直存在误差,因为有误差电流才会不是0,加热器与环境作用才会平衡,如果没有误差,那加热器停止供电,在环境作用下,温度就会降下去,加热器会继续加热又会产生误差,这与实际情况不符。相应的温度误差就是稳态误差,在这个误差下,发热与散热达到平衡,但是温度却永远达不到我要求的35度,如果没有那些环境影响的话,我加热到35度,温度会自已保持住,但是那种条件是不存在的。

那么加上积分后又是什么情况呢?有误差的时候,加热器就会加热,直到误差为零,这时候温度达到了35度,但是积分项这时候是不为零的。因为我要靠这部分积分来给加热器输出,以保证加热与散热达到平衡呢!要不不是又会产生误差了吗?

这就是为什么在比例控制下有误差,但是比例积分控制下没有误差的原因。当然刚才说的是外部条件,影响因素还有可能是内部条件。

那么微分又是怎么理解呢?刚开始加热电流大,误差相应减小的更快速,那么误差的微分就是负数,且会越来越小。那么我要将误差加上一个负数就是使比例作用减缓了。这样就相当于是我在温度还没变化或是刚要变化时就给限定了一下,防止我电流加的太大而使系统振荡、不稳定。

这里要说的是在三个调节中,比例作用是作用最大的,积分会使振荡增加但会消除稳态误差,微分可以减小系统振荡次数,积分与微分都是在比例的作用上来进行调整 的。

PID也是一知半解,以上纯属个人理解,肯定有不足,希望能有人指教一下。

时间: 2024-10-02 12:13:50

PID通俗理解的相关文章

通俗理解数据库隔离机制

=========================================== 原文链接: 通俗理解数据库隔离机制   转载请注明出处! =========================================== 在理解数据库隔离机制的时候发现网上很多文章都是千篇一律,解释语言太过于标准书面化,描述的晦涩难懂,因果关系模糊.在这里将自己对隔离机制的理解描述一下,力争做到能够通过浅显的语言描述出来. 数据库隔离机制是对于多线程同时操作数据库而言的.对于单线程操作数据库不存在所谓

分布式理论之一:Paxos算法的通俗理解

维基的简介:Paxos算法是莱斯利·兰伯特(Leslie Lamport,就是 LaTeX 中的"La",此人现在在微软研究院)于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法. Paxos算法目前在Google的Chubby.MegaStore.Spanner等系统中得到了应用,Hadoop中的ZooKeeper也使用了Paxos算法,在上面的各个系统中,使用的算法与Lamport提出的原始Paxos并不完全一样,这个以后再慢慢分析.本博文的目的是,如何让一个小白在半

Activity生命周期的通俗理解

一般一个Activity有三种状态: 1.在屏幕上是可见的且可操作的,他是活跃或运行状态,负责响应用户操作. 2.失去焦点但仍然可见时,他处于暂停状态.也就是说未被完全遮蔽,所以该Activity仍对用户可见,但是当系统处于繁忙的时候下,有肯会杀死该Activity. 3.完全被另一个Activity覆盖时处于停止状态.也有可能被杀死. Activity生命周期中各方法的调用情况 1.onCreate(Bundle savedStatus):第一次创建时调用,只调用一次. 2.onStart()

SSL服务器认证过程通俗理解!

理解有错误的地方,请高手指正! 1,CA中心,有一套自己的公钥和私钥,服务器用自己的私钥去生成一个自认证的证书 2,CA中心的自认证证书是有公信力的,一般被客户端所熟知,发放到每个客户端! 3,客户端需要将CA中的自认证证书加入信任列表! 4,服务器要加入CA体系,要向CA中心申请,CA中心验证了服务器的资料后,向server发放一个证书(key),里面包含了一个秘钥 5,CA发给server的证书是用CA自己的秘钥和申请者的秘钥(key)加密过的, 6,证书里面包含:申请者的身份信息.申请者公

关于面对对对象之接口的通俗理解

一些人写代码,按照计算机思考的那个模式写,写出来的代码,能实现功能,但是拓展性不好,而有些人写代码,是按照人看世界的那些思路去写,写出来的代码 看起来像那么回事儿,而且也非常的符合逻辑,这是为什么?为什么同样是写代码,为什么写出来的东西会完全不一样了? 最近一直在反思自己写的代码,以前写,都是为了完成某项功能而写,写完了也就完事儿了,可是最近却不是这样了,最近想打问题是,写代码是不是只要在实现功能的层面上就可以了了?后来得出的答案是,代码其实还可以写的更加的灵活多变一点的 那么今天我们就来谈谈关

网络七层协议的通俗理解

OSI七层模式简单通俗理解 这个模型学了好多次,总是记不住.今天又看了一遍,发现用历史推演的角度去看问题会更有逻辑,更好记.本文不一定严谨,可能有错漏,主要是抛砖引玉,帮助记性不好的人.总体来说,OSI模型是从底层往上层发展出来的. 这个模型推出的最开始,是是因为美国人有两台机器之间进行通信的需求. 需求1: 科学家要解决的第一个问题是,两个硬件之间怎么通信.具体就是一台发些比特流,然后另一台能收到. 于是,科学家发明了物理层: 主要定义物理设备标准,如网线的接口类型.光纤的接口类型.各种传输介

矢量控制的通俗理解

关于矢量控制,通俗理解是: 1. 先把电机想像成2块飞速旋转磁铁,定子磁铁和转子磁铁.进一步可以引申为定子磁场和转子磁场. 2. 电机的电磁转矩与定子磁场强度.转子磁场强度.2块磁铁之间的夹角的正弦成正比.关于这一点不难理解,两块磁铁对齐的时候(0度,sin0=0;),不存在电磁转矩:两块磁铁相差90度的时候(sin90=1;),电磁转矩达到顶峰:  3. 接下来控制的目标就是: 1)稳定其中的一个旋转磁场的强度(恒定磁场):  2) 控制磁铁之间角度为90度(磁场定向FOC): 3) 控制另一

通俗理解TCP握手次数是三次

理解之后,应该说是至少三次就可以保证可靠传输了. 看到网上一篇帖子http://www.cnblogs.com/TechZi/archive/2011/10/18/2216751.html是这么说的,“我Google该问题答案后发现,网络上对于“三次握手”的过程都有很详细的描述,但对于为什么需要“三次握手”来建立连接却没有很好的答案.只能求助于书本了.”后面有谢希德树和另一本书的解释,其实还是太书面化,不够通俗,但是看到后面引到google论坛看到一个让我非常满意的答案. https://gro

happens-before通俗理解

学习Java并发,到后面总会接触到happens-before偏序关系.初接触玩意儿简直就是不知所云,下面是经过一段时间折腾后个人对此的一点浅薄理解,希望对初接触的人有帮助.如有不正确之处,欢迎指正. synchronized.大部分锁,众所周知的一个功能就是使多个线程互斥/串行的(共享锁允许多个线程同时访问,如读锁)访问临界区,但他们的第二个功能 —— 保证变量的可见性 —— 常被遗忘. 为什么存在可见性问题?简单介绍下.相对于内存,CPU的速度是极高的,如果CPU需要存取数据时都直接与内存打