【HDU 5698】瞬间移动(组合数,逆元)

x和y分开考虑,在(1,1)到(n,m)之间可以选择走i步。就需要选i步对应的行C(n-2,i)及i步对应的列C(m-2,i)。相乘起来。 假设$m\leq n$
$$\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^i=\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^{m-2-i}=C_{n+m-4}^{m-2}$$
然后标程里求i的阶乘的逆是预处理的,主要这句:
$$f[i]=(M-M/i)\cdot f[M\%i]\%M$$
这里f即i的逆元,为什么可以这么求呢?
$$M=k\cdot i+r \equiv 0 \pmod M$$
两边乘上$i^{-1}\cdot r^{-1}$
$$\begin{eqnarray} k\cdot r^{-1}+i^{-1} &\equiv& 0 &\pmod M\\
i^{-1} &\equiv& -k\cdot r^{-1} &\pmod M\\
i^{-1} &\equiv& M-\left\lfloor\frac{M}{i}\right\rfloor\cdot \left(M\bmod i\right)^{-1} &\pmod M \end{eqnarray}$$
代码

#include<cstdio>
#define M 1000000007
#define N 200001
#define ll long long
ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1};
int n,m;
ll C(ll a,ll b){
    return fac[a]*inv[b]%M*inv[a-b]%M;
}
int main(){
    for(int i=2;i<N;i++){
        fac[i]=fac[i-1]*i%M;
        f[i]=(M-M/i)*f[M%i]%M;
        inv[i]=inv[i-1]*f[i]%M;
    }
    while(~scanf("%d%d",&n,&m))
        printf("%lld\n",C(m+n-4,m-2));
}

  

时间: 2024-10-15 19:26:44

【HDU 5698】瞬间移动(组合数,逆元)的相关文章

hdu 5698 瞬间移动(2016&quot;百度之星&quot; - 初赛(Astar Round2B)——数学题)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5698 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子

HDU 5698 大组合数取模(逆元)

瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1215    Accepted Submission(s): 600 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几

2016 ACM/ICPC Asia Regional Shenyang Online 1003/HDU 5894 数学/组合数/逆元

hannnnah_j’s Biological Test Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 802    Accepted Submission(s): 269 Problem Description hannnnah_j is a teacher in WL High school who teaches biolog

HDU 5698 瞬间移动 (2016&quot;百度之星&quot; - 初赛(Astar Round2B) 1003)

传送门 瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 140 Accepted Submission(s): 66 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几种方案

HDU 5698 瞬间移动

题目: Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第行第列的格子有几种方案,答案对取模. Input 多组测试数据. 两个整数 Output 一个整数表示答案 Sample Input 4 5 Sample Output 10 首先,很容易求出答案是(m+n-4)!/(m-2)!/(n-2)! 然后就是想办法打表了. 肯定不是真的把阶乘都存起来,因为10000!的十进

hdu 5698 瞬间移动(排列组合)

这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/51478117 这个我只是看了他的思路,之后代码就自己写,之后交上去就是1A,我感觉好的题解就应该是这样的,Orz 要先看下他的思路,现在我在补充些我的理解: 首先,你要把行,列分开看,先说行,从1到n,1和n都不能走,因为1是开始,n是确定的,所以你有n-2种选择,你可以枚举x从1到n-2,就相当于高中学的

HDU 4828 (卡特兰数+逆元)

HDU 4828 Grids 思路:可以转化为卡特兰数,先把前n个人标为0,后n个人标为1,然后去全排列,全排列的数列,如果每个1的前面对应的0大于等于1,那么就是满足的序列,如果把0看成入栈,1看成出栈,那么就等价于n个元素入栈出栈,求符合条件的出栈序列,这个就是卡特兰数了.然后去递推一下解,过程中需要求逆元去计算 代码: #include <stdio.h> #include <string.h> const int N = 1000005; const long long M

瞬间移动(组合数, 逆元)

瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 263    Accepted Submission(s): 143 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几

HDU 6044--Limited Permutation(搜索+组合数+逆元)

题目链接 Problem Description As to a permutation p1,p2,?,pn from 1 to n, it is uncomplicated for each 1≤i≤n to calculate (li,ri) meeting the condition that min(pL,pL+1,?,pR)=pi if and only if li≤L≤i≤R≤ri for each 1≤L≤R≤n. Given the positive integers n, (