- 内存分配方式和调试机制
- M内存分配
- 内存分配函数
- M内存分配
MFCWin32或者C语言的内存分配API,有四种内存分配API可供使用。
- Win32的堆分配函数
每一个进程都可以使用堆分配函数创建一个私有的堆──调用进程地址空间的一个或者多个页面。DLL创建的私有堆必定在调用DLL的进程的地址空间内,只能被调用进程访问。
HeapCreate用来创建堆;HeapAlloc用来从堆中分配一定数量的空间,HeapAlloc分配的内存是不能移动的;HeapSize可以确定从堆中分配的空间的大小;HeapFree用来释放从堆中分配的空间;HeapDestroy销毁创建的堆。
- Windows传统的全局或者局部内存分配函数
由于Win32采用平面内存结构模式,Win32下的全局和局部内存函数除了名字不同外,其他完全相同。任一函数都可以用来分配任意大小的内存(仅仅受可用物理内存的限制)。用法可以和Win16下基本一样。Win32下保留这类函数保证了和Win16的兼容。
- C语言的标准内存分配函数
C语言的标准内存分配函数包括以下函数:malloc,calloc,realloc,free,等。
这些函数最后都映射成堆API函数,所以,malloc分配的内存是不能移动的。这些函数的调式版本为
malloc_dbg,calloc_dbg,realloc_dbg,free_dbg,等。
- Win32的虚拟内存分配函数
虚拟内存API是其他API的基础。虚拟内存API以页为最小分配单位,X86上页长度为4KB,可以用GetSystemInfo函数提取页长度。虚拟内存分配函数包括以下函数:
- LPVOID VirtualAlloc(LPVOID lpvAddress,
DWORD cbSize,
DWORD fdwAllocationType,
DWORD fdwProtect);
该函数用来分配一定范围的虚拟页。参数1指定起始地址;参数2指定分配内存的长度;参数3指定分配方式,取值MEM_COMMINT或者MEM_RESERVE;参数4指定控制访问本次分配的内存的标识,取值为PAGE_READONLY、PAGE_READWRITE或者PAGE_NOACCESS。
- LPVOID VirtualAllocEx(HANDLE process,
LPVOID lpvAddress,
DWORD cbSize,
DWORD fdwAllocationType,
DWORD fdwProtect);
该函数功能类似于VirtualAlloc,但是允许指定进程process。VirtaulFree、VirtualProtect、VirtualQuery都有对应的扩展函数。
- BOOL VirtualFree(LPVOID lpvAddress,
DWORD dwSize,
DWORD dwFreeType);
该函数用来回收或者释放分配的虚拟内存。参数1指定希望回收或者释放内存的基地址;如果是回收,参数2可以指向虚拟地址范围内的任何地方,如果是释放,参数2必须是VirtualAlloc返回的地址;参数3指定是否释放或者回收内存,取值为MEM_DECOMMINT或者MEM_RELEASE。
- BOOL VirtualProtect(LPVOID lpvAddress,
DWORD cbSize,
DWORD fdwNewProtect,
PDWORD pfdwOldProtect);
该函数用来把已经分配的页改变成保护页。参数1指定分配页的基地址;参数2指定保护页的长度;参数3指定页的保护属性,取值PAGE_READ、PAGE_WRITE、PAGE_READWRITE等等;参数4用来返回原来的保护属性。
- DWORD VirtualQuery(LPCVOID lpAddress,
PMEMORY_BASIC_INFORMATION lpBuffer,
DWORD dwLength
);
该函数用来查询内存中指定页的特性。参数1指向希望查询的虚拟地址;参数2是指向内存基本信息结构的指针;参数3指定查询的长度。
- BOOL VirtualLock(LPVOID lpAddress,DWORD dwSize);
该函数用来锁定内存,锁定的内存页不能交换到页文件。参数1指定要锁定内存的起始地址;参数2指定锁定的长度。
- BOOL VirtualUnLock(LPVOID lpAddress,DWORD dwSize);
参数1指定要解锁的内存的起始地址;参数2指定要解锁的内存的长度。
- C++的new 和 delete操作符
MFC定义了两种作用范围的new和delete操作符。对于new,不论哪种,参数1类型必须是size_t,且返回void类型指针。
- 全局范围内的new和delete操作符
原型如下:
void _cdecl ::operator new(size_t nSize);
void __cdecl operator delete(void* p);
调试版本:
void* __cdecl operator new(size_t nSize, int nType,
LPCSTR lpszFileName, int nLine)
- 类定义的new和delete操作符
原型如下:
void* PASCAL classname::operator new(size_t nSize);
void PASCAL classname::operator delete(void* p);
类的operator new操作符是类的静态成员函数,对该类的对象来说将覆盖全局的operator new。全局的operator new用来给内部类型对象(如int)、没有定义operator new操作符的类的对象分配内存。
new操作符被映射成malloc或者malloc_dbg,delete被映射成free或者free_dbg。
- 调试手段
MFC应用程序可以使用C运行库的调试手段,也可以使用MFC提供的调试手段。两种调试手段分别论述如下。
- C运行库提供和支持的调试功能
C运行库提供和支持的调试功能如下:
- 调试信息报告函数
用来报告应用程序的调试版本运行时的警告和出错信息。包括:
_CrtDbgReport 用来报告调试信息;
_CrtSetReportMode 设置是否警告、出错或者断言信息;
_CrtSetReportFile 设置是否把调试信息写入到一个文件。
- 条件验证或者断言宏:
断言宏主要有:assert 检验某个条件是否满足,不满足终止程序执行。
验证函数主要有:
_CrtIsValidHeapPointer 验证某个指针是否在本地堆中;
_CrtIsValidPointer 验证指定范围的内存是否可以读写;
_CrtIsMemoryBlock 验证某个内存块是否在本地堆中。
- 内存(堆)调试:
malloc_dbg 分配内存时保存有关内存分配的信息,如在什么文件、哪一行分配的内存等。有一系列用来提供内存诊断的函数:
_CrtMemCheckpoint 保存内存快照在一个_CrtMemState结构中;
_CrtMemDifference 比较两个_CrtMemState;
_CrtMemDumpStatistics 转储输出一_CrtMemState结构的内容;
_CrtMemDumpAllObjectsSince 输出上次快照或程序开始执行以来在堆中分配的所有对象的信息;
_CrtDumpMemoryLeaks 检测程序执行以来的内存漏洞,如果有漏洞则输出所有分配的对象。
- MFC提供的调试手段
MFC在C运行库提供和支持的调试功能基础上,设计了一些类、函数等来协助调试。
- MFC的TRACE、ASSERT
ASSERT
使用ASSERT断言判定程序是否可以继续执行。
TRACE
使用TRACE宏显示或者打印调试信息。TRACE是通过函数AfxTrace实现的。由于AfxTrace函数使用了cdecl调用约定,故可以接受个数不定的参数,如同printf函数一样。它的定义和实现如下:
void AFX_CDECL AfxTrace(LPCTSTR lpszFormat, ...)
{
#ifdef _DEBUG // all AfxTrace output is controlled by afxTraceEnabled
if (!afxTraceEnabled)
return;
#endif
//处理个数不定的参数
va_list args;
va_start(args, lpszFormat);
int nBuf;
TCHAR szBuffer[512];
nBuf = _vstprintf(szBuffer, lpszFormat, args);
ASSERT(nBuf < _countof(szBuffer));
if ((afxTraceFlags & traceMultiApp) && (AfxGetApp() != NULL))
afxDump << AfxGetApp()->m_pszExeName << ": ";
afxDump << szBuffer;
va_end(args);
}
#endif //_DEBUG
在程序源码中,可以控制是否显示跟踪信息,显示什么跟踪信息。如果全局变量afxTraceEnabled为TRUE,则TRACE宏可以输出;否则,没有TRACE信息被输出。如果通过afxTraceFlags指定了跟踪什么消息,则输出有关跟踪信息,例如为了指定“Multilple Application Debug”,令AfxTraceFlags|=traceMultiApp。可以跟踪的信息有:
enum AfxTraceFlags
{
traceMultiApp = 1, // multi-app debugging
traceAppMsg = 2, // main message pump trace (includes DDE)
traceWinMsg = 4, // Windows message tracing
traceCmdRouting = 8, // Windows command routing trace
//(set 4+8 for control notifications)
traceOle = 16, // special OLE callback trace
traceDatabase = 32, // special database trace
traceInternet = 64 // special Internet client trace
};
这样,应用程序可以在需要的地方指定afxTraceEnabled的值打开或者关闭TRACE开关,指定AfxTraceFlags的值过滤跟踪信息。
Visual C++提供了一个TRACE工具,也可以用来完成上述功能。
为了显示消息信息,MFC内部定义了一个AFX_MAP_MESSAG类型的数组allMessages,储存了Windows消息和消息名映射对。例如:
allMessages[1].nMsg = WM_CREATE,
allMessages[1].lpszMsg = “WM_CREATE”
MFC内部还使用函数_AfxTraceMsg显示跟踪消息,它可以接收一个字符串和一个MSG指针,然后,把该字符串和MSG的各个域的信息组合成一个大的字符串并使用AfxTrace显示出来。
allMessages和函数_AfxTraceMsg的详细实现可以参见AfxTrace.cpp。
- MFC对象内容转储
对象内容转储是CObject类提供的功能,所有从它派生的类都可以通过覆盖虚拟函数DUMP来支持该功能。在讲述CObject类时曾提到过。虚拟函数Dump的定义:
class ClassName : public CObject
{
public:
#ifdef _DEBUG
virtual void Dump( CDumpContext& dc ) const;
#endif
…
};
在使用Dump时,必须给它提供一个CDumpContext类型的参数,该参数指定的对象将负责输出调试信息。为此,MFC提供了一个预定义的全局CDumpContext对象afxDump,它把调试信息输送给调试器的调试窗口。从前面AfxTrace的实现可以知道,MFC使用了afxDump输出跟踪信息到调试窗口。
CDumpContext类没有基类,它提供了以文本形式输出诊断信息的功能。
例如:
CPerson* pMyPerson = new CPerson;
// set some fields of the CPerson object...
//...
// now dump the contents
#ifdef _DEBUG
pMyPerson->Dump( afxDump );
#endif
- MFC对象有效性检测
对象有效性检测是CObject类提供的功能,所有从它派生的类都可以通过覆盖虚拟函数AssertValid来支持该功能。在讲述CObject类时曾提到过。
虚拟函数AssertValid的定义:
class ClassName : public CObject
{
public:
#ifdef _DEBUG
virtual void AssertValid( ) const;
#endif
…
};
使用ASSERT_VALID宏判断一个对象是否有效,该对象的类必须覆盖了AssertValid函数。形式为:ASSERT_VALID(pObject)。
另外,MFC提供了一些函数来判断地址是否有效,如:
AfxIsMemoryBlock,AfxIsString,AfxIsValidAddress。
- 内存诊断
MFC使用DEBUG_NEW来跟踪内存分配时的执行的源码文件和行数。
把#define new DEBUG_NEW插入到每一个源文件中,这样,调试版本就使用_malloc_dbg来分配内存。MFC Appwizard在创建框架文件时已经作了这样的处理。
- AfxDoForAllObjects
MFC提供了函数AfxDoForAllObjects来追踪动态分配的内存对象,函数原型如下:
void AfxDoForAllObjects( void (*pfn)(CObject* pObject,
void* pContext), void* pContext );
其中:
参数1是一个函数指针,AfxDoForAllObjects对每个对象调用该指针表示的函数。
参数2将传递给参数1指定的函数。
AfxDoForAllObjects可以检测到所有使用new分配的CObject对象或者CObject类派生的对象,但全局对象、嵌入对象和栈中分配的对象除外。
- 内存漏洞检测
仅仅用于new的DEBUG版本分配的内存。
完成内存漏洞检测,需要如下系列步骤:
- 调用AfxEnableMemoryTracking(TRUE/FALSE)打开/关闭内存诊断。在调试版本下,缺省是打开的;关闭内存诊断可以加快程序执行速度,减少诊断输出。
- 使用MFC全局变量afxMemDF更精确地指定诊断输出的特征,缺省值是allocMemDF,可以取如下值或者这些值相或:
afxMemDF,delayFreeMemDF,checkAlwaysMemDF
其中:allocMemDF表示可以进行内存诊断输出;delayFreeMemDF表示是否是在应用程序结束时才调用free或者delete,这样导致程序最大可能的分配内存;checkAlwaysMemDF表示每一次分配或者释放内存之后都调用函数AfxCheckMemory进行内存检测(AfxCheckMemory检查堆中所有通过new分配的内存(不含malloc))。
这一步是可选步骤,非必须。
- 创建一个CMemState类型的变量oldMemState,调用CMemState的成员函数CheckPoint获得初次内存快照。
- 执行了系列内存分配或者释放之后,创建另一个CMemState类型变量newMemState,调用CMemState的成员函数CheckPoint获得新的内存快照。
- 创建第三个CMemState类型变量difMemState,调用CMemState的成员函数Difference比较oldMemState和newMemState,结果保存在变量difMemState中。如果没有不同,则返回FALSE,否则返回TRUE。
- 如果不同,则调用成员函数DumpStatistics输出比较结果。
例如:
// Declare the variables needed
#ifdef _DEBUG
CMemoryState oldMemState, newMemState, diffMemState;
oldMemState.Checkpoint();
#endif
// do your memory allocations and deallocations...
CString s = "This is a frame variable";
// the next object is a heap object
CPerson* p = new CPerson( "Smith", "Alan", "581-0215" );
#ifdef _DEBUG
newMemState.Checkpoint();
if( diffMemState.Difference( oldMemState, newMemState ) )
{
TRACE( "Memory leaked!/n" );
diffMemState.DumpStatistics();
//or diffMemState.DumpAllObjectsSince();
}
#endif
MFC在应用程序(调试版)结束时,自动进行内存漏洞检测,如果存在漏洞,则输出漏洞的有关信息。
上一章 回目录 下一章 |
http://blog.csdn.net/kl222/article/details/1499816