莫烦tensorflow(8)-CNN

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#number 1 to 10 data
mnist = input_data.read_data_sets(‘MNIST_data‘,one_hot=True)

def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)

def conv2d(x,W):
#stride[1,x_movement,y_movement,1]
#must have strides[0]=strides[3]=1
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding=‘SAME‘)

def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘)

#define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#28x28
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])
# print(x_image.shape)#[n_samples,28,28,1]

##conv1 layer##
W_conv1 = weight_variable([5,5,1,32])#pathc 5x5,in size 1,out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) #output size 14x14x32

##conv2 layer##
W_conv2 = weight_variable([5,5,32,64])#pathc 5x5,in size 32,out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) #output size 7x7x64

##func1 layer##
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
#[n_sample,7,7,64]->>[n_sample,7*7*64]
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
##func2 layer##
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))#loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()

#important step
sess.run(tf.global_variables_initializer())

for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:1})
if i%50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))

时间: 2024-10-09 03:50:29

莫烦tensorflow(8)-CNN的相关文章

莫烦TENSORFLOW(4)-placeholder

import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) output = tf.multiply(input1,input2) with tf.Session() as sess: print(sess.run(output,feed_dict={input1:[7.],input2:[2.0]}))

莫烦TENSORFLOW(6)-tensorboard

import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope('layer'): with tf.name_sco

莫烦TENSORFLOW(5)

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) W

莫烦TENSORFLOW(7)-mnist

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 datamnist = input_data.read_data_sets('MNIST_data',one_hot=True) def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(t

莫烦TENSORFLOW(3)-Variable

import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.add(state,one)update = tf.assign(state,new_value) init = tf.initialize_all_variables()#must have if define variable with tf.Session() as sess: sess.run(

莫烦tensorflow(9)-Save&Restore

import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape when restore# W = tf.Variable([[1,2,3],[3,4,5]],dtype=tf.float32,name='Weights')# b = tf.Variable([[1,2,3]],dtype=tf.float32,name='biases') # init = tf

莫烦tensorflow(1)-训练线性函数模型

import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32)y_data = x_data*0.1+0.3 ####create tensorflow structure start###Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))biases = tf.Variable(tf.zeros([

莫烦tensorflow(2)-Session

import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3]])matrix2 = tf.constant([[2],[2]])protuct = tf.matmul(matrix1,matrix2) # sess = tf.Session()# result = sess.run(protuct) # print(result)# sess.close()

稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记。

稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记. 还有 google 在 udacity 上的 CNN 教程. CNN(Convolutional Neural Networks) 卷积神经网络简单讲就是把一个图片的数据传递给CNN,原涂层是由RGB组成,然后CNN把它的厚度加厚,长宽变小,每做一层都这样被拉长,最后形成一个分类器: 如果想要分成十类的话,那么就会有0到9这十个位置,这个数据属于哪一类就在哪个位置上是1,而在其它位置上为零. 在 RGB 这个层,每一次把一块核心抽出来,然后厚度