数据结构之伸展树

1、 概述

二叉查找树(Binary Search Tree,也叫二叉排序树,即Binary Sort Tree)能够支持多种动态集合操作,它可以用来表示有序集合、建立索引等,因而在实际应用中,二叉排序树是一种非常重要的数据结构

算法复杂度角度考虑,我们知道,作用于二叉查找树上的基本操作(如查找,插入等)的时间复杂度与树的高度成正比。对一个含n个节点的完全二叉树,这些操作的最坏情况运行时间为O(log n)。但如果因为频繁的删除和插入操作,导致树退化成一个n个节点的线性链(此时即为一个单链表),则这些操作的最坏情况运行时间为O(n)。为了克服以上缺点,很多二叉查找树的变形出现了,如红黑树、AVL树,Treap树等。

本文介绍了二叉查找树的一种改进数据结构–伸展树(Splay Tree)。它的主要特点是不会保证树一直是平衡的,但各种操作的平摊时间复杂度是O(log n),因而,从平摊复杂度上看,二叉查找树也是一种平衡二叉树。另外,相比于其他树状数据结构(如红黑树,AVL树等),伸展树的空间要求与编程复杂度要小得多。

2、 基本操作

伸展树的出发点是这样的:考虑到局部性原理(刚被访问的内容下次可能仍会被访问,查找次数多的内容可能下一次会被访问),为了使整个查找时间更小,被查频率高的那些节点应当经常处于靠近树根的位置。这样,很容易得想到以下这个方案:每次查找节点之后对树进行重构,把被查找的节点搬移到树根,这种自调整形式的二叉查找树就是伸展树。每次对伸展树进行操作后,它均会通过旋转的方法把被访问节点旋转到树根的位置。

为了将当前被访问节点旋转到树根,我们通常将节点自底向上旋转,直至该节点成为树根为止。“旋转”的巧妙之处就是在不打乱数列中数据大小关系(指中序遍历结果是全序的)情况下,所有基本操作的平摊复杂度仍为O(log n)。

伸展树主要有三种旋转操作,分别为单旋转,一字形旋转和之字形旋转。为了便于解释,我们假设当前被访问节点为X,X的父亲节点为Y(如果X的父亲节点存在),X的祖父节点为Z(如果X的祖父节点存在)。

(1)    单旋转

节点X的父节点Y是根节点。这时,如果X是Y的左孩子,我们进行一次右旋操作;如果X 是Y 的右孩子,则我们进行一次左旋操作。经过旋转,X成为二叉查找树T的根节点,调整结束。

(2)    一字型旋转

节点X 的父节点Y不是根节点,Y 的父节点为Z,且X与Y同时是各自父节点的左孩子或者同时是各自父节点的右孩子。这时,我们进行一次左左旋转操作或者右右旋转操作。

(3)    之字形旋转

节点X的父节点Y不是根节点,Y的父节点为Z,X与Y中一个是其父节点的左孩子而另一个是其父节点的右孩子。这时,我们进行一次左右旋转操作或者右左旋转操作。

3、伸展树区间操作

在实际应用中,伸展树的中序遍历即为我们维护的数列,这就引出一个问题,怎么在伸展树中表示某个区间?比如我们要提取区间[a,b],那么我们将a前面一个数对应的结点转到树根,将b 后面一个结点对应的结点转到树根的右边,那么根右边的左子树就对应了区间[a,b]。原因很简单,将a 前面一个数对应的结点转到树根后, a 及a 后面的数就在根的右子树上,然后又将b后面一个结点对应的结点转到树根的右边,那么[a,b]这个区间就是下图中B所示的子树。

利用区间操作我们可以实现线段树的一些功能,比如回答对区间的询问(最大值,最小值等)。具体可以这样实现,在每个结点记录关于以这个结点为根的子树的信息,然后询问时先提取区间,再直接读取子树的相关信息。还可以对区间进行整体修改,这也要用到与线段树类似的延迟标记技术,即对于每个结点,额外记录一个或多个标记,表示以这个结点为根的子树是否被进行了某种操作,并且这种操作影响其子结点的信息值,当进行旋转和其他一些操作时相应地将标记向下传递。

与线段树相比,伸展树功能更强大,它能解决以下两个线段树不能解决的问题:

(1) 在a后面插入一些数。方法是:首先利用要插入的数构造一棵伸展树,接着,将a 转到根,并将a 后面一个数对应的结点转到根结点的右边,最后将这棵新的子树挂到根右子结点的左子结点上。

(2)  删除区间[a,b]内的数。首先提取[a,b]区间,直接删除即可。

4、实现

代码全部来自【参考资料2】。

(1)旋转操作


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

// node 为结点类型,其中ch[0]表示左结点指针,ch[1]表示右结点指针

// pre 表示指向父亲的指针

// Rotate函数用于(左/右)旋转x->pre

void Rotate(node *x, int d) // 旋转操作,d=0 表示左旋,d=1 表示右旋

{

  node *y = x->pre;

  Push_Down(y), Push_Down(x);

  // 先将Y 结点的标记向下传递(因为Y 在上面),再把X 的标记向下传递

  y->ch[! d] = x->ch[d];

  if (x->ch[d] != Null) x->ch[d]->pre = y;

  x->pre = y->pre;

  if (y->pre != Null)

  if (y->pre->ch[0] == y) y->pre->ch[0] = x; else y->pre->ch[1] = x;

  x->ch[r] = y, y->pre = x, Update(y); // 维护Y 结点

  if (y == root) root = x; // root 表示整棵树的根结点

}

(2)splay操作


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

void Splay(node *x, node *f) // Splay 操作,表示把结点x 转到结点f 的下面

{

  for (Push_Down(x) ; x->pre != f; ) // 一开始就将X 的标记下传

  if (x->pre->pre == f) // 父结点的父亲即为f,执行单旋转

    if (x->pre->ch[0] == x) Rotate(x, 1); else Rotate(x, 0);

  else

  {

    node *y = x->pre, *z = y->pre;

    if (z->ch[0] == y)

      if (y->ch[0] == x)

        Rotate(y, 1), Rotate(x, 1); // 一字形旋转

      else

        Rotate(x, 0), Rotate(x, 1); // 之字形旋转

    else

      if (y->ch[1] == x)

        Rotate(y, 0), Rotate(x, 0); // 一字形旋转

      else

        Rotate(x, 1), Rotate(x, 0); // 之字形旋转

  }

  Update(x); // 最后再维护X 结点

}

(3)将第k个数转到要求的位置


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

// 找到处在中序遍历第k 个结点,并将其旋转到结点f 的下面

void Select(int k, node *f)

{

  int tmp;

  node *t;

  for (t = root; ; ) // 从根结点开始

  {

    Push_Down(t); // 由于要访问t 的子结点,将标记下传

    tmp = t->ch[0]->size; // 得到t 左子树的大小

    if (k == tmp + 1) break; // 得出t 即为查找结点,退出循环

    if (k <= tmp) // 第k 个结点在t 左边,向左走

      t = t->ch[0];

    else // 否则在右边,而且在右子树中,这个结点不再是第k 个

      k -= tmp + 1, t = t->ch[1];

  }

  Splay(t, f); // 执行旋转

}

5、 应用

(1)     数列维护问题

题目:维护一个数列,支持以下几种操作:

1. 插入:在当前数列第posi 个数字后面插入tot 个数字;若在数列首位插入,则posi 为0。

2. 删除:从当前数列第posi 个数字开始连续删除tot 个数字。

3. 修改:从当前数列第posi 个数字开始连续tot 个数字统一修改为c 。

4. 翻转:取出从当前数列第posi 个数字开始的tot 个数字,翻转后放入原来的位置。

5. 求和:计算从当前数列第posi 个数字开始连续tot 个数字的和并输出。

6. 求和最大子序列:求出当前数列中和最大的一段子序列,并输出最大和。

(2)     轻量级web服务器lighttpd中用到数据结构splay tree.

6、 参考资料

(1)     杨思雨《伸展树的基本操作与应用》

(2)     Crash《运用伸展树解决数列维护问题》

----------------------------------------------------------------------------------------------
更多关于数据结构和算法的介绍,请查看:数据结构与算法汇总
----------------------------------------------------------------------------------------------

原创文章,转载请注明: 转载自董的博客

本文链接地址: http://dongxicheng.org/structure/splay-tree/

时间: 2024-11-13 03:38:25

数据结构之伸展树的相关文章

PHP算法 《树形结构》 之 伸展树(1) - 基本概念

伸展树的介绍 1.出处:http://www.cnblogs.com/skywang12345/p/3604238.html 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由Daniel Sleator和Robert Tarjan创造.(01) 伸展树属于二叉查找树,即它具有和二叉查找树一样的性质:假设x为树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x].如果y是x的左子树中的一个结点,则key[y] <= key

数据结构-伸展树

声明:本文是对某高中生的竞赛论文学习的文章 介绍: 二叉查找树能够支持多种动态集合操作.对于一个含有n个结点的完全二叉树,这些操作的最还情况运行时间是O(lgn),但如果树是含有n个结点的线性链,则这些操作的最坏情况运行时间为O(n).而像红黑树.AVL树这种二叉查找树的变形在最坏情况下,仍能保持较好性能. 本文将要介绍的伸展树也是二叉查找树的变形,它对空间要求及编程难度的要求相对不高. 伸展树: 伸展树与二叉查找树一样,具有有序性.即伸展树的每一个结点x满足:该结点的左子树中的每个元素都小于x

高级数据结构实现——自顶向下伸展树

[0]README 1) 本文部分内容转自 数据结构与算法分析,旨在理解 高级数据结构实现——自顶向下伸展树 的基础知识: 2) 源代码部分思想借鉴了数据结构与算法分析,有一点干货原创代码,for original source code, please visithttps://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree/master/chapter12/p345_topdown_splay_tree 3) you c

poj_3468 伸展树

题目大意 一个数列,每次操作可以是将某区间数字都加上一个相同的整数,也可以是询问一个区间中所有数字的和.(这里区间指的是数列中连续的若干个数)对每次询问给出结果. 思路 1. 伸展树的一般规律 对于区间的查找更新操作,可以考虑使用伸展树.线段树等数据结构.这里使用伸展树来解决.     伸展树对数组进行维护的核心思想是,将需要维护的一组数单独提取出来,形成一棵子树(一般为整棵树的根节点的右子节点的左孩子节点 为根),然后再这个子树上进行操作.此时进行某些操作(如 ADD, SUM 等),只需要在

HYSBZ 1503 郁闷的出纳员 伸展树

题目链接: https://vjudge.net/problem/26193/origin 题目描述: 中文题面....... 解题思路: 伸展树, 需要伸展树的模板, 突然发现自己昨天看到的模板不是太好, 现在又新找了一个,  很简练, 自己将模板的实现从头到尾看了一遍, 觉得数组实现的实在是非常的巧妙, 然后自己照着敲了一遍, 边敲边看, 崩掉了.....肯定是哪里手残了, 没有必要浪费时间去改了, 有那时间不如看点别的 代码: #include <iostream> #include &

[转载]伸展树(一)之 图文解析 和 C语言的实现

概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后,学习伸展树是一件相当容易的事情.和以往一样,本文会先对伸展树的理论知识进行简单介绍,然后给出C语言的实现.后序再分别给出C++和Java版本的实现:这3种实现方式的原理都一样,选择其中之一进行了解即可.若文章有错误或不足的地方,希望您能不吝指出! 目录 1. 伸展树的介绍 2. 伸展树的C实现 3. 伸展树的

poj_3580 伸展树

自己伸展树做的第一个题 poj 3580 supermemo. 题目大意 对一个数组进行维护,包含如下几个操作: ADD x, y, d 在 A[x]--A[y] 中的每个数都增加d REVERSE x, y 将 A[x]--A[y] 中的数进行反转,变为 A[y],A[y-1]....A[x+1],A[x] REVOLVE x, y, T 将 A[x]--A[y]中的数连续右移T次 INSERT x, P 在A后添加数P DELETE x 删除A[x] MIN x, y 查询A[x]--A[y

查找——清晰图解伸展树SplayTree

伸展树 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它由Daniel Sleator和Robert Tarjan创造,后者对其进行了改进. 假设想要对一个二叉查找树执行一系列的查找操作.为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置.于是想到设计一个简单方法,在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方.splaytree应运而生.splaytree是一种自调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转

Splay Tree(伸展树)

参考:<数据结构(C++语言版)>邓俊辉著 (好书 一. 伸展树(由 D. D. Sleator 和 R. E. Tarjan 于 1985 年发明)也是平衡二叉搜索树的一种形式.相对于 AVL 树,伸展树的实现更为简洁 伸展树无需时刻都严格地保持全树的平衡,但却能够在任何足够长的真实操作序列中,保持分摊意义上的高效率 伸展树也不需要对基本的二叉树节点结构做任何附加的要求或改动,更不需要记录平衡因子或高度之类的额外信息,故适用范围更广 二.局部性 信息处理的典型模式是,将所有的数据项视作一个集