SQL Server 中的事务和锁(三)-Range S-U,X-X 以及死锁

在上一篇中忘记了一个细节。Range T-K 到底代表了什么?Range T-K Lock 代表了在 SERIALIZABLE 隔离级别中,为了保护范围内的数据不被并发的事务影响而使用的一类锁模式(避免幻读)。它由两个部分构成:

第一个部分代表了他锁定了一个索引范围,在这个范围内,所有索引使用 T 锁进行锁定;

第二个部分是而这个范围内已经命中的Key,这些 Key 将使用 K 锁进行锁定。

合并在一起我们说在这个范围内,索引范围和特定的row的锁定模式为 Range T-K。

举上一篇的一个例子吧:

SELECT [data] FROM [MyTable] WHERE [index_column]>=20 AND [index_column]<=40

的锁的使用情况是:

实际上,上述语句产生的锁有两个部分,第一个是 Range S 锁,范围是 20-40 的索引范围,第二是 Key 上使用的 S 锁,在图中可以看到有三个 Key 被命中了,分别是“无限远”,“25”对应的索引以及“30”对应的索引。其 Mode 为 Range S-S,其 Type 为 KEY,也就是,他们的范围锁为 Range S,Key 锁为 S 锁。

更新和插入操作涉及的锁

涉及的锁主要是两种,一种是 Range S-U 锁,另一种是 Range X-X 锁。

Range S-U,这个选定索引范围会获得 S 锁而命中的 Key 使用 U 锁锁定,以便将来转换为 X 锁。而在更新时,则彻底成为 X 锁,这个范围内的锁模式也就成了 Range X-X。由于更新的数据列不同(有可能是索引列,有可能不是),使用的索引也不同(聚集,非聚集,唯一,等),因此其情况就不容易像 Range S-S 锁那么容易得出规律了。总的来说有几种情况还是一致的,这里就不再逐个实验了(这里强烈推荐阅读 SQL Server 2008 Internals 这本书关于锁的章节,讲述的很清楚):

首先,在相等判断(例如“=”),且索引为唯一索引的情况下。如果该索引命中,不会有 Range T-K 锁锁定记录范围,而相应的记录直接获得 U 锁或者 X 锁;

其次,在相等判断,不论索引是否为唯一索引,如果该索引没有命中记录,则 Range T-K 锁锁定 “下一个”记录。(关于“下一个”的解释请参见上一篇);

第三,在范围条件(>、<、BETWEEN),不论索引是否唯一,如果该索引命中,不但该范围会获得 Range T-K 锁,而该范围的“下一个”记录也会获得 Range T-K 锁。

为什么 Serializable 隔离级别更容易死锁

我们从第一篇的图可以看到,SERIALIZABLE 级别能够保证最严格的数据一致性,但是这些保卫的手段只要稍稍变化就可以发展为死锁。事实上,在各种隔离级别中,数据一致性越高,则越容易发生死锁;数据一致性越低,则发生死锁的概率就越小。

在这些隔离级别中,SERIALIZABLE 是最容易死锁的,这得益于 Range T-K 锁使锁定的范围不仅仅限于现有数据,还有未来数据;不仅仅限定现有的若干数据页,而是一个广大的范围。

这其中,最恐怖的问题莫过于“下一个”数据的锁定。这非常容易造成大范围死锁。我们以第一篇的例子来说明:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

SELECT @findCount=COUNT(id) FROM MyTable

WHERE [fk_related_id][email protected]

IF (@findCount > 0)

BEGIN

    ROLLBACK TRANSACTION

    RETURN ERROR_CODE

END

INSERT INTO MyTable ([fk_related_id],…)

VALUES (@Argument,…)

COMMIT TRANSACTION

RETURN SUCCESS_CODE

在这个例子中,表 MyTable 的列 fk_related_id 是一个唯一索引(非聚集),事务隔离级别为 SERIALIZABLE。不同的存储过程执行会传入不同的 @Argument,表面看来,这不会有任何的问题,但是由于“下一个”数据的锁定,在稍高水平的并发上,就出现了大约 80% 的失败情况,这些失败都来源于死锁。我们挑选了其中的一次:

我们试图以每秒钟 15 个的压力在 @Argument 属于 [1, 1000] 的范围内进行存储过程调用。在这个过程中,有一个 @Argument 为 115 的记录首先成功的插入了进去!

id fk_related_id data
1 115

接下来有一个 @Argument 为 74 的记录获得了机会,我们假设它的 Session Id 为 A。它执行了 SELECT 语句:

id fk_related_id data
1 115 (A 获得了Range S-S Lock)

接下来有一个 @Argument 为 4 的记录获得了机会,我们假设它的 Session Id 为 B。它执行了 SELECT 语句:

id fk_related_id data
  115 (A 、B获得了Range S-S Lock)

接下来,Session A 执行到了 INSERT 语句,那么 Range S-S 锁会试图进行一个转换测试(Range I-N 锁),但这显然是行不通的,因为 Session B 也获得了 Range S-S Lock,因此 Session A 陷入了等待;

而 Session B 也执行到了 INSERT 语句,相同的,它也陷入了等待;这样,Session A 等待 Session B 放弃 Range 锁,Session B 等待 Session A 放弃锁,这是一个死锁了。

而更糟糕的事情是,凡是 @Argument 小于 115 的记录,他都会试图令下一个记录获得新的 Range S-S 锁,从而进入无限的等待中,至少,1-115 号记录死锁,并且最终 114 个需要放弃,1个成功。这就是为什么 SERIALIZABLE 隔离级别不但会发生死锁,而且在某些时候,是大面积死锁。

总之:在 SERIALIZABLE 隔离级别下,只要有类似同一索引为条件先读后写的状况的,在较大并发下发生死锁的概率很高,而且如果碰巧既有的记录索引按照排序规则在非常靠后的位置,则很可能发生大面积死锁。

那么如何解决这个问题呢,呃,降低隔离级别当然是一个方法,例如,如果你能接受幻读,那么 REPEATABLE READ 是一个不错的选择。但是我突然在某篇博客中看到了使用 SELECT WITH UPDLOCK 的方法。事实上,这种东西让死锁更容易了。

例如,一个存储过程 SELECT B,而后 SELECT A;而另外的存储过程先 SELECT A,再 SELECT B,那么由于顺序不同,排他锁仅仅是 Read 的情况就可能发生死锁了。

那么为什么 REPEATABLE READ 会好得多呢?因为 REPEATABLE READ 紧紧锁定现有记录,而不会使用 Range 锁。我们仍然以上述存储过程为例,这样,只有两个被锁定的行数据在同一个页上(因为默认情况下使用页级锁),或者说挨得足够近,才有可能死锁,并且这个死锁仅仅限于这个数据页上的记录而不会影响其他记录,因此死锁的概率大大降低了。

我们实际测试中,在相同的测试条件下,并发提高到 100 的情况下时才有不到 0.1% 的死锁失败几率。当然我们付出了允许幻读的代价。

时间: 2024-10-12 20:11:15

SQL Server 中的事务和锁(三)-Range S-U,X-X 以及死锁的相关文章

SQL Server中的事务与锁

了解事务和锁 事务:保持逻辑数据一致性与可恢复性,必不可少的利器. 锁:多用户访问同一数据库资源时,对访问的先后次序权限管理的一种机制,没有他事务或许将会一塌糊涂,不能保证数据的安全正确读写. 死锁:是数据库性能的重量级杀手之一,而死锁却是不同事务之间抢占数据资源造成的. 不懂的听上去,挺神奇的,懂的感觉我在扯淡,下面带你好好领略下他们的风采,嗅査下他们的狂骚.. 先说事务--概念,分类 用华仔无间道中的一句来给你诠释下:去不了终点,回到原点. 举例说明: 在一个事务中,你写啦2条sql语句,一

【转】SQL Server中的事务与锁

原文出处:http://www.cnblogs.com/knowledgesea/p/3714417.html 了解事务和锁 事务:保持逻辑数据一致性与可恢复性,必不可少的利器. 锁:多用户访问同一数据库资源时,对访问的先后次序权限管理的一种机制,没有他事务或许将会一塌糊涂,不能保证数据的安全正确读写. 死锁:是数据库性能的重量级杀手之一,而死锁却是不同事务之间抢占数据资源造成的. 不懂的听上去,挺神奇的,懂的感觉我在扯淡,下面带你好好领略下他们的风采,嗅査下他们的狂骚.. 先说事务--概念,分

SQL Server中的事务与锁(转)

转自:http://www.cnblogs.com/knowledgesea/p/3714417.html 了解事务和锁 事务:保持逻辑数据一致性与可恢复性,必不可少的利器. 锁:多用户访问同一数据库资源时,对访问的先后次序权限管理的一种机制,没有他事务或许将会一塌糊涂,不能保证数据的安全正确读写. 死锁:是数据库性能的重量级杀手之一,而死锁却是不同事务之间抢占数据资源造成的. 不懂的听上去,挺神奇的,懂的感觉我在扯淡,下面带你好好领略下他们的风采,嗅査下他们的狂骚.. 先说事务--概念,分类

SQL Server中的事务与锁(帮助理解,优化,很细致)

了解事务和锁 事务:保持逻辑数据一致性与可恢复性,必不可少的利器. 锁:多用户访问同一数据库资源时,对访问的先后次序权限管理的一种机制,没有他事务或许将会一塌糊涂,不能保证数据的安全正确读写. 死锁:是数据库性能的重量级杀手之一,而死锁却是不同事务之间抢占数据资源造成的. 不懂的听上去,挺神奇的,懂的感觉我在扯淡,下面带你好好领略下他们的风采,嗅査下他们的狂骚.. 先说事务--概念,分类 用华仔无间道中的一句来给你诠释下:去不了终点,回到原点. 举例说明: 在一个事务中,你写啦2条sql语句,一

T-SQL查询进阶--SQL Server中的事务与锁

为什么需要锁 在任何多用户的数据库中,必须有一套用于数据修改的一致的规则,当两个不同的进程试图同时修改同一份数据时,数据库管理系统(DBMS)负责解决它们之间潜在的冲突.任何关系数据库必须支持事务的ACID属性,所以在开始了解锁之前,首先简单了解一下数据库事务和事务的ACID属性. 原子性(Atomicity):原子性意味着数据库中的事务执行是作为原子.即不可在分,整个语句要么执行,要么不执行 一致性(Consistency):在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏.(唯一约

(转)SQL Server 中的事务和锁(三)-Range S-U,X-X 以及死锁

在上一篇中忘记了一个细节.Range T-K 到底代表了什么?Range T-K Lock 代表了在 SERIALIZABLE 隔离级别中,为了保护范围内的数据不被并发的事务影响而使用的一类锁模式(避免幻读).它由两个部分构成: 第一个部分代表了他锁定了一个索引范围,在这个范围内,所有索引使用 T 锁进行锁定: 第二个部分是而这个范围内已经命中的Key,这些 Key 将使用 K 锁进行锁定. 合并在一起我们说在这个范围内,索引范围和特定的row的锁定模式为 Range T-K. 举上一篇的一个例

浅谈SQL Server中的事务日志(三)----在简单恢复模式下日志的角色

浅谈SQL Server中的事务日志(三)----在简单恢复模式下日志的角色 本篇文章是系列文章中的第三篇,前两篇的地址如下: 浅谈SQL Server中的事务日志(一)----事务日志的物理和逻辑构架 浅谈SQL Server中的事务日志(二)----事务日志在修改数据时的角色 简介 在简单恢复模式下,日志文件的作用仅仅是保证了SQL Server事务的ACID属性.并不承担具体的恢复数据的角色.正如”简单”这个词的字面意思一样,数据的备份和恢复仅仅是依赖于手动备份和恢复.在开始文章之前,首先

Microsoft SQL Server中的事务与并发详解

本篇索引: 1.事务 2.锁定和阻塞 3.隔离级别 4.死锁 一.事务 1.1 事务的概念 事务是作为单个工作单元而执行的一系列操作,比如查询和修改数据等. 事务是数据库并发控制的基本单位,一条或者一组语句要么全部成功,对数据库中的某些数据成功修改; 要么全部不成功,数据库中的数据还原到这些语句执行之前的样子. 比如网上订火车票,要么你定票成功,余票显示就减一张; 要么你定票失败获取取消订票,余票的数量还是那么多.不允许出现你订票成功了,余票没有减少或者你取消订票了,余票显示却少了一张的这种情况

Microsoft SQL Server中的事务(转载)

1.1 事务的概念 事务是作为单个工作单元而执行的一系列操作,比如查询和修改数据等. 事务是数据库并发控制的基本单位,一条或者一组语句要么全部成功,对数据库中的某些数据成功修改; 要么全部不成功,数据库中的数据还原到这些语句执行之前的样子. 比如网上订火车票,要么你定票成功,余票显示就减一张; 要么你定票失败获取取消订票,余票的数量还是那么多.不允许出现你订票成功了,余票没有减少或者你取消订票了,余票显示却少了一张的这种情况.这种不被允许出现的情况就要求购票和余票减少这两个不同的操作必须放在一起