【树型DP】BZOJ1564 二叉查找树(noi2009)

二叉查找树

【题目描述】

已知一棵特殊的二叉查找树。根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小。

另一方面,这棵查找树中每个结点都有一个权值,每个结点的权值都比它的儿子结点的权值要小。

已知树中所有结点的数据值各不相同;所有结点的权值也各不相同。这时可得出这样一个有趣的结论:如果能够确定树中每个结点的数据值和权值,那么树的形态便可以唯一确定。因为这样的一棵树可以看成是按照权值从小到大顺序插入结点所得到的、按照数据值排序的二叉查找树。

一个结点在树中的深度定义为它到树根的距离加1。因此树的根结点的深度为1。

每个结点除了数据值和权值以外,还有一个访问频度。我们定义一个结点在树中的访问代价为它的访问频度乘以它在树中的深度。整棵树的访问代价定义为所有结点在树中的访问代价之和。

现在给定每个结点的数据值、权值和访问频度,你可以根据需要修改某些结点的权值,但每次修改你会付出K的额外修改代价。你可以把结点的权值改为任何实数,但是修改后所有结点的权值必须仍保持互不相同。现在你要解决的问题是,整棵树的访问代价与额外修改代价的和最小是多少?

【输入格式】

输入文件中的第一行为两个正整数N,K。其中:N表示结点的个数,K表示每次修改所需的额外修改代价。

接下来的一行为N个非负整数,表示每个结点的数据值。

再接下来的一行为N个非负整数,表示每个结点的权值。

再接下来的一行为N个非负整数,表示每个结点的访问频度。

其中:所有的数据值、权值、访问频度均不超过400000。每两个数之间都有一个空格分隔,且行尾没有空格。

【输出格式】

输出文件中仅一行为一个数,即你所能得到的整棵树的访问代价与额外修改代价之和的最小值。

【样例输入】

4 10

1 2 3 4

1 2 3 4

1 2 3 4

【样例输出】

29

分析:

参加比赛遇到的题目,比赛时看到题目感觉是用树型dp,但一直没有思路,只好用近似模拟的方法乱搞的,后来看了题解才会做......

首先我们知道该树是一颗特殊的二叉排序树,它比普通的多一个优先级(在本题中就是权值),使它有了堆的性质。如果没有修改操作,我们可以根据这些性质构造一颗这样的树然后模拟,而本题的难度就在修改,对此可以用动规解决。

定义f[i,j,w]为第i..j的节点构成节点权值大于w的子树遍历的最小代价,a[i,1]保存节点的数据值,a[i,2]保存节点离散化后的权值,a[i,3]保存节点的访问频度,s[i,j]为第i..j的节点访问频度之和。

离散化权值,就是将权值按从小到大排序后用其在数组中编号来表示其权值,之所以能这样做是因为节点权值各部相同,而每个点权值数字本身多少没有意义,重要的是它与其它节点权值相比的大小关系,离散化后就可以将大小参差不齐的数字按大小的关系转换为有序的编号,可以节省空间,也可动规中的一些麻烦的东西。

动规式子分两种情况

在i..j中枚举根节点k

若不修改,条件是k的权值>=w,则f[i,j,w]:=max(f[i,j,w],f[i,k-1,a[k,2]]+f[k+1,j,a[k,2]]+s[i,j])

若修改,则f[i,j,w]:=max(f[i,j,w],f[i,k-1,w]+f[k+1,j,w]+s[i,j]+k)

解释:如果不修改,k必须在子树中,其左右孩子权值均要大于k的权值;如果将k修改为根节点,其左右孩子权值可比w大很小很小的一个数字。

代码

program treap;
var
  f:array[0..100,0..100,0..100]of longint;
  a:array[1..3,0..100]of longint;
  s:array[0..100,0..100]of longint;
  n,i,m,j,w,k:longint;
function min(x,y:longint):longint;
begin
  if x<y then min:=x else min:=y;
end;
procedure sort(x:longint);
var i,j,t:longint;
begin
  for i:=1 to n-1 do
   for j:=i+1 to n do
    if a[x,i]>a[x,j] then
     begin
       t:=a[1,i]; a[1,i]:=a[1,j]; a[1,j]:=t;
       t:=a[2,i]; a[2,i]:=a[2,j]; a[2,j]:=t;
       t:=a[3,i]; a[3,i]:=a[3,j]; a[3,j]:=t;
     end;
end;
begin
  assign(input,‘treap.in‘);
reset(input);
assign(output,‘treap.out‘);
rewrite(output);
  readln(n,m);
  for i:=1 to n do
   read(a[1,i]); readln;
  for i:=1 to n do
   read(a[2,i]); readln;
  for i:=1 to n do
   read(a[3,i]);
  sort(2);
  for i:=1 to n do
   a[2,i]:=i;
  sort(1);
  for i:=1 to n do
   for j:=i to n do
     s[i,j]:=s[i,j-1]+a[3,j];
  for i:=1 to n do
   for j:=1 to n do
    for w:=1 to n do
      f[i,j,w]:=maxlongint div 10;
  for i:=1 to n+1 do
   for w:=0 to n do
     f[i,i-1,w]:=0;
  for w:=n downto 1 do
   for i:=n downto 1 do
    for j:=i to n do
      for k:=i to j do
        if i=j then
          if a[2,k]>=w then f[i,j,w]:=a[3,k] else f[i,j,w]:=a[3,k]+m
      else begin
        if a[2,k]>=w then f[i,j,w]:=min(f[i,j,w],f[i,k-1,a[2,k]]+f[k+1,j,a[2,k]]+s[i,j]);
          f[i,j,w]:=min(f[i,j,w],f[i,k-1,w]+f[k+1,j,w]+s[i,j]+m);
       end;
  writeln(f[1,n,1]);
  close(input); close(output);
end.

时间: 2024-10-12 07:04:19

【树型DP】BZOJ1564 二叉查找树(noi2009)的相关文章

HDU1561 The more, The Better(树型DP)

题目是有n个存有宝藏的城堡,攻克任何一个城堡都需要先攻克0个或其他1个城堡,问攻克m个城堡最多能得到多少宝藏. 题目给的城堡形成一个森林,添加一个超级根把森林连在一起就是树了,那么就考虑用树型DP: dp[u][m]表示以u结点为根的子树攻克m个结点的最大价值 但是这样转移太难了,根是从每个孩子通过各自分配若干的城堡去攻克转移的,一个排列组合数,阶乘,是指数级的时间复杂度! 看了题解,原来这是依赖背包,没看背包九讲..不过网上的博客似乎没说清楚,事实上这个状态应该是三个维度来表示: dp[u][

POJ3659 Cell Phone Network(树上最小支配集:树型DP)

题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. 树上的每个结点作为其子树的根可以有三个状态: 不属于支配集且还没被支配 不属于支配集但被其孩子支配 属于支配集 那么就是用dp[u][1\2\3]来表示动归的状态. 123转移该怎么转移就怎么转移..最后的结果就是min(dp[root][2],dp[root][3]). 要注意的是对于有些结点前2

HDU_1561_The more, The Better_树型dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1561 The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7031    Accepted Submission(s): 4121 Problem Description ACboy很喜欢玩一种战略游戏,

HDU_1520_Anniversary party_树型dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1520 Anniversary party Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8233    Accepted Submission(s): 3574 Problem Description There is going to b

二叉苹果树(树型DP+背包)

二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点).这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树: 2   5 \  / 3  4 \  / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 程序名:apple 输入格式: 第1行2个数,N和Q(1<=Q<= N,1<N<=

HDU_1011_Starship Troopers_树型dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1011 Starship Troopers Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 16276    Accepted Submission(s): 4335 Problem Description You, the leader o

【HDOJ 5834】Magic boy Bi Luo with his excited tree(树型DP)

[HDOJ 5834]Magic boy Bi Luo with his excited tree(树型DP) Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem Description Bi Luo is a magic boy, he also has a migic tree,

【POJ 2486】 Apple Tree(树型dp)

[POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8981   Accepted: 2990 Description Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to an apple tree. There are N nodes in the tree. Each

[HAOI2010][BZOJ2427] 软件安装|tarjan|树型dp

2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 463  Solved: 194[Submit][Status][Discuss] Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(