图像处理标准图像lena的故事图The Lenna Story behind image processing

The Lenna Story - www.lenna.org

 

Imaging Experts Meet Lenna in Person

Yes, it‘s true! Lenna attended the 50th Anniversary IS&T conference in Boston held in May 1997.

Check out the media coverage from PlayboyWired, and more from Playboy.

Click here for more info and pictures from the conference.

 

Introduction

The Lenna (or Lena) picture is one of the most widely used standard test images used for compression algorithms. Thecomp.compression FAQsays the following:

    For the curious: ‘lena‘ or ‘lenna‘ is a digitized Playboy centerfold, from November 1972. (Lenna is the spelling in Playboy, Lena is the Swedish spelling of the name.) Lena Soderberg (ne Sjööblom) was last reported living in her native Sweden, happily married with three kids and a job with the state liquor monopoly. In 1988, she was interviewed by some Swedish computer related publication, and she was pleasantly amused by what had happened to her picture. That was the first she knew of the use of that picture in the computer business.

For the full details on the history of this image check out this excellent May 2001 article in the Newsletter of the IEEE Professional Communication Society by Jamie Hutchinson. Here‘s an excerpt:

      Alexander Sawchuk estimates that it was in June or July of 1973 when he, then an assistant professor of electrical engineering at the USC Signal and Image Processing Institute (SIPI), along with a graduate student and the SIPI lab manager, was hurriedly searching the lab for a good image to scan for a colleague‘s conference paper. They had tired of their stock of usual test images, dull stuff dating back to television standards work in the early 1960s. They wanted something glossy to ensure good output dynamic range, and they wanted a human face. Just then, somebody happened to walk in with a recent issue of Playboy.

The engineers tore away the top third of the centerfold so they could wrap it around the drum of their Muirhead wirephoto scanner, which they had outfitted with analog-to-digital converters (one each for the red, green, and blue channels) and a Hewlett Packard 2100 minicomputer. The Muirhead had a fixed resolution of 100 lines per inch and the engineers wanted a 512 x 512 image, so they limited the scan to the top 5.12 inches of the picture, effectively cropping it at the subject‘s shoulders.

The original image is still available as part of the USC SIPI Image Database in their "miscellaneous" collection.

Over the years there has been quite a bit of controversy over the use of this image. Some people proposed banning the use of this image because of its source. Also, Playboy threatened to prosecute the unauthorized use of the image. Check out an editorial by the editor of SPIE journal Optical Engineering. Check out a note by the former editor-in-chief of the IEEE Transactions on Image Processing. According to Wired Magazine, Playboy has eased up in its pursuit of the copyright violators of this image.

Another interesting piece of trivia is that Lenna‘s issue (November 1972) was Playboy‘s best selling issue ever and sold 7,161,561 copies.

Don‘t forget to check out Lenna‘s birthday page (3/31) and playmate directory page at Playboy. (Warning: contains nudity.)

There‘s even a sonnet dedicated to Lenna also found here.

 

Click above for the original as a TIFF image.

The Rest of the Story

Very few people have seen the complete original picture. A number of years ago when I was working on compression algorithms, a colleague of mine obtained a copy of the original Playboy Magazine. I scanned it in and here‘s a glimpse:

For the full picture click hereWARNING this picture contains nudity.

 

 

Compression Research

The pictures on this page are not meant to be used for compression research purposes, they all have already been JPEG compressed.

For a source of a copy of the standard version of Lenna, please refer to the comp.compression FAQ or the USC SIPI Image Database.

I have also made available here an uncompressed TIFF format version (768K) of the original.

For a very small sample of research which has used the Lenna image click here.

from: http://www.cs.cmu.edu/~chuck/lennapg/lenna.shtml

时间: 2024-10-16 17:27:52

图像处理标准图像lena的故事图The Lenna Story behind image processing的相关文章

图像处理界的标准图像Lena背后的故事

今天晚上实验室的哥们问到我:“蒋志强,你知道咱们数字图像处理界标准图像Lena吗?” “当然知道啊,不就是那个512×512的美丽姐姐的标准图像么?”我不以为然的回答: “那幅图像事实上不是原始图像?”我哥们纠正我的说法: “真的么?”我非常怀疑的问道: “那事实上仅仅是原图的截图”哥们严肃认真的解释道: 数字图像处理界的标准图像Lena: 强烈的好奇心驱始我上网搜索,关于Lena的故事,结果让我大吃一惊,更确切的说是让我笑得肚子都痛了.独自乐乐不如众乐乐. 图片中的女孩全名Lena Soder

图像处理之图像梯度效果(转载)

转载自:http://blog.csdn.net/jia20003/article/details/7664777 图像处理之图像梯度效果 基本思想: 利用X方向与Y方向分别实现一阶微分,求取振幅,实现图像梯度效果.关于如何计算图像 一阶微分参见这里:http://blog.csdn.net/jia20003/article/details/7562092 使用的两种微分算子分别为Prewitt与Sobel,其中Soble在X, Y两个方向算子分别为: Prewitt在X, Y方向上梯度算子分别

图像处理标准库pillow

pillow模块 PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了.PIL功能非常强大,但API却非常简单易用. 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow. 安装pillow pycharm安装 命令行安装 Python中引入 from PIL import Image #生成

图像处理---读取图像后“是否读入成功”的几种提示

<图像处理---读取图像后“是否读入成功”的几种提示> 图像读取之后,判断是否读取成功,对程序调试会有一定的帮助. 使用的环境VS2010 + OPenCV2.4.3 //方式一: //加载图像 Mat src = imread("D:\\003_test_img\\stripe003.png"); if (src.empty()) { printf("could not load image ...\n"); return -1; //return 0

【图像处理之图像的特征检测1】SIFT算法(未完待续)

本文为本人入门学习所用,由参考多方资料整理而成,完成后将加上参考文献 SIFT简介及相关特点 SIFT全称:尺度不变特征转换(Scale-invariant feature transform) 是一种用来侦测与描述影像中的局部性特征的算法:它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由David Lowe在1999年所发表,2004年完善总结. SIFT算法的特点有: 1. SIFT特征是图像的局部特征,其对旋转.尺度缩放.亮度变化保持不变性,对视角变化.仿射变换.噪声也

图像处理之图像特征提取之(二)LBP特征

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietik?inen, 和D. Harwood 在1994年提出,用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征: 1.LBP特征的描述 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,

数字图像处理_图像基本运算

图像基本运算 1点运算 线性点运算是指输入图像的灰度级与输出图像呈线性关系.s=ar+b  (r为输入灰度值,s为相应点的输出灰度值).  当a=1,b=0时,新图像与原图像相同:  当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显示时更亮或更暗:  当a>1时,新图像对比度增加:  当a<1时,新图像对比度降低:  当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补: 非线性点运算是指输入与输出为非线性关系,常见的非线性灰度变换为对数变换和幂次变换

【数字图像处理】图像细化处理

图像细化 细化技术:把一个平面区域简化成图的结构形状表示法骨架:一种细化结构,它是目标的重要拓扑描述,具有非常广泛的应用.在图像识别或数据压缩时,经常用细化结构.例如:在识别字符之前,往往要先对字符作细化处理,求出字符的细化结构.细化的作用:目的将图像的骨架提取出来的同时,保持图像细小部分的连通性,对被处理的图像进行细化有助于突出形状特点和减少冗余信息量. 细化算法 细化算法:采取逐次去除边界的方法进行的,不能破化图像的连通性.通常选择一组结构元素对,不断在这些结构对中循环,如果所得结果不再变化

数字图像处理,图像锐化算法的C++实现

http://blog.csdn.net/ebowtang/article/details/38961399 之前一段我们提到的算法都是和平滑有关, 经过平滑算法之后, 图像锐度降低, 降低到一定程度, 就变成了模糊. 今天我们反其道行之, 我们看看锐化是怎么做的. 这里的锐化, 还是的从平滑谈开去.我们先来观察原来的图像和平滑图像的区别: 原图 raw: 模糊图 blur: _________________________________________________________ 源图