[luoguP2766] 最长递增子序列问题(最大流)

传送门

题解来自网络流24题:

【问题分析】

第一问时LIS,动态规划求解,第二问和第三问用网络最大流解决。

【建模方法】

首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K。

1、把序列每位i拆成两个点<i.a>和<i.b>,从<i.a>到<i.b>连接一条容量为1的有向边。

2、建立附加源S和汇T,如果序列第i位有F[i]=K,从S到<i.a>连接一条容量为1的有向边。

3、如果F[i]=1,从<i.b>到T连接一条容量为1的有向边。

4、如果j>i且A[i] < A[j]且F[j]+1=F[i],从<i.b>到<j.a>连接一条容量为1的有向边。

求网络最大流,就是第二问的结果。把边(<1.a>,<1.b>)(<N.a>,<N.b>)(S,<1.a>)(<N.b>,T)这四条边的容量修改为无穷大,再求一次网络最大流,就是第三问结果。

【建模分析】

上述建模方法是应用了一种分层图的思想,把图每个顶点i按照F[i]的不同分为了若干层,这样图中从S出发到T的任何一条路径都是一个满足条件的最长上升子序列。

由于序列中每个点要不可重复地取出,需要把每个点拆分成两个点。单位网络的最大流就是增广路的条数,所以最大流量就是第二问结果。

第三问特殊地要求x1和xn可以重复使用,只需取消这两个点相关边的流量限制,求网络最大流即可。

还有这个题题意有些问题,不是递增,是不递减。

还有我这个题没有拆点在洛谷和codevs上都过了,究竟需不需要拆点啊。。

——代码(木有拆点)

  1 #include <queue>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <iostream>
  5 #define N 1010
  6 #define M 3000001
  7 #define max(x, y) ((x) > (y) ? (x) : (y))
  8 #define min(x, y) ((x) < (y) ? (x) : (y))
  9
 10 int n, ans, cnt, s, t, sum;
 11 int a[N], f[N];
 12 int head[N], to[M], val[M], next[M], dis[N], cur[N];
 13
 14 inline int read()
 15 {
 16     int x = 0, f = 1;
 17     char ch = getchar();
 18     for(; !isdigit(ch); ch = getchar()) if(ch == ‘-‘) f = -1;
 19     for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - ‘0‘;
 20     return x * f;
 21 }
 22
 23 inline void add(int x, int y, int z)
 24 {
 25     to[cnt] = y;
 26     val[cnt] = z;
 27     next[cnt] = head[x];
 28     head[x] = cnt++;
 29 }
 30
 31 inline bool bfs()
 32 {
 33     int i, u, v;
 34     std::queue <int> q;
 35     memset(dis, -1, sizeof(dis));
 36     q.push(s);
 37     dis[s] = 0;
 38     while(!q.empty())
 39     {
 40         u = q.front(), q.pop();
 41         for(i = head[u]; i ^ -1; i = next[i])
 42         {
 43             v = to[i];
 44             if(val[i] && dis[v] == -1)
 45             {
 46                 dis[v] = dis[u] + 1;
 47                 if(v == t) return 1;
 48                 q.push(v);
 49             }
 50         }
 51     }
 52     return 0;
 53 }
 54
 55 inline int dfs(int u, int maxflow)
 56 {
 57     if(u == t) return maxflow;
 58     int i, v, d, ret = 0;
 59     for(i = cur[u]; i ^ -1; i = next[i])
 60     {
 61         v = to[i];
 62         if(val[i] && dis[v] == dis[u] + 1)
 63         {
 64             d = dfs(v, min(val[i], maxflow));
 65             ret += d;
 66             cur[u] = i;
 67             val[i] -= d;
 68             val[i ^ 1] += d;
 69             if(ret == maxflow) return ret;
 70         }
 71     }
 72     return ret;
 73 }
 74
 75 inline void clear()
 76 {
 77     int i, j;
 78     sum = cnt = 0;
 79     memset(head, -1, sizeof(head));
 80     for(i = 1; i <= n; i++)
 81     {
 82         if(f[i] == 1)     add(s, i, 1), add(i, s, 0);
 83         if(f[i] == ans) add(i, t, 1), add(t, i, 0);
 84     }
 85     for(i = 1; i <= n; i++)
 86         for(j = 1; j < i; j++)
 87             if(a[j] <= a[i] && f[j] + 1 == f[i])
 88                 add(j, i, 1), add(i, j, 0);
 89 }
 90
 91 int main()
 92 {
 93     int i, j, x;
 94     n = read();
 95     s = 0, t = n + 1;
 96     for(i = 1; i <= n; i++)
 97     {
 98         a[i] = read();
 99         x = 0;
100         for(j = 1; j < i; j++)
101             if(a[j] <= a[i])
102                 x = max(x, f[j]);
103         f[i] = x + 1;
104         ans = max(ans, f[i]);
105     }
106     printf("%d\n", ans);
107     clear();
108     while(bfs())
109     {
110         for(i = s; i <= t; i++) cur[i] = head[i];
111         sum += dfs(s, 1e9);
112     }
113     printf("%d\n", sum);
114     clear();
115     add(s, 1, 1e9), add(1, s, 0);
116     if(f[n] == ans) add(n, t, 1e9), add(t, n, 0);
117     while(bfs())
118     {
119         for(i = s; i <= t; i++) cur[i] = head[i];
120         sum += dfs(s, 1e9);
121     }
122     printf("%d\n", sum);
123     return 0;
124 }

时间: 2024-11-13 09:05:51

[luoguP2766] 最长递增子序列问题(最大流)的相关文章

最长递增子序列问题(费用流).cpp

http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=487 费用流,每次沿着最长边增广 //http://www.cnblogs.com/IMGavin/ #include <iostream> #include <stdio.h> #include <cstdlib> #include <cstring> #include <queue> #include <vect

HDU 3998 Sequence (最长递增子序列+最大流SAP,拆点法)经典

Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1666    Accepted Submission(s): 614 Problem Description There is a sequence X (i.e. x[1], x[2], ..., x[n]). We define increasing subsequ

[网络流24题] 最长递增子序列 (最多不相交路径---网络最大流)

731. [网络流24题] 最长递增子序列 ★★★☆ 输入文件:alis.in 输出文件:alis.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 给定正整数序列x1,..., xn. (1)计算其最长递增子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的递增子序列. (3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长 度为s的递增子序列. «编程任务: 设计有效算法完成(1)(2)(3)提出的计算任务. «数据输入: 由

[网络流24题]最长递增子序列问题

题目大意:给定长度为n的序列a,求:1.最长递增子序列长度:2.最多选出几个不相交的最长递增子序列:3.最多选出几种在除了第1个和第n个以外的地方不相交的最长递增子序列.(n<=1000) 思路:先倒着DP,求出f[i]表示以a[i]开头的最长的递增子序列长度,然后建图,若f[i]=最长递增子序列长度则S向i连1,若f[i]=1则i向T连1,若i<j且a[i]<a[j]且f[i]=f[j]+1则i向j连1,为保证每个点只被流一次,拆成入点和出点,流量限制1,跑最大流即可解决第二问,点1和

【网络流24题】最长递增子序列

Description 给定正整数序列x1,..., xn. (1)计算其最长递增子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的递增子序列. (3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列. 设计有效算法完成(1)(2)(3)提出的计算任务 Input 第1 行有1个正整数n(n<=500),表示给定序列的长度. 接下来的1 行有n个正整数x1,..., xn. Output 第1 行是最长递增子序列的长度s. 第2行是可

最长递增子序列 &amp;&amp; 最大子序列、最长递增子序列、最长公共子串、最长公共子序列、字符串编辑距离

http://www.cppblog.com/mysileng/archive/2012/11/30/195841.html 最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长递增子序列的长度,则状态转移方程为: dp[i] = max{dp[j]+1}, 1<=j<i,a[j]<a[i]. 这样简单的复杂度为O(n^2),其实还有更好的方

洛谷P2766-最长递增子序列问题

chunlvxiong的博客 题目描述: 给定正整数序列x1,...,xn (1≤n≤500). 1.计算其最长递增子序列的长度s. 2.计算从给定的序列中最多可取出多少个长度为s的递增子序列. 3.如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列. 思考&分析:  第一问应该比较easy,利用DP求解,时间复杂度O(N^2)--利用线段树可以优化到O(NlogN),但是没这个必要. 第二问:考虑使用网络流求解. 首先把所有点x拆成两个点xa,xb,每

最长递增子序列问题 2011-12-29

算法实现题8-6 最长递增子序列问题(习题 8-17) ´问题描述: 给定正整数序列 n x x , ,1 ? . (1)计算其最长递增子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的递增子序列. (3)如果允许在取出的序列中多次使用x1和 xn,则从给定序列中最多可取出多少个长度为s的递增子序列. ´编程任务: 设计有效算法完成(1)(2)(3)提出的计算任务. ´数据输入: 由文件input.txt提供输入数据.文件第1 行有 1个正整数n,表示给定序列的长度.接下来的1

[网络流24题] 最长递增子序列

[网络流24题] 最长递增子序列 «问题描述:给定正整数序列x1,..., xn.(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列. 注意:这里的最长递增子序列即最长不下降子序列!!!«编程任务:设计有效算法完成(1)(2)(3)提出的计算任务.«数据输入:由文件alis.in提供输入数据.文件第1 行有1个正整数n(n<=500),表示给定序列的长