POJ-3436 ACM Computer Factory (最大流[Ford-Fulkerson])

ACM Computer Factory

http://poj.org/problem?id=3436

Time Limit: 1000MS   Memory Limit: 65536K
        Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in
arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part
must not be present, 1 — the part is required, 2 — presence of the part doesn‘t matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to
entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P,
where Qi specifies performance, Si,j— input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W,
where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
Sample input 2
3 5
5   0 0 0  0 1 0
100 0 1 0  1 0 1
3   0 1 0  1 1 0
1   1 0 1  1 1 0
300 1 1 2  1 1 1
Sample input 3
2 2
100  0 0  1 0
200  0 1  1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

题目大意:有n台机器能组装电脑部分零件,每台机器有属性q,表示每小时能处理的电脑数,每台机器可对电脑的p个零件进行操作,输入为p元组,表示每个零件的状态,0表示不能存在该零件,1表示必须存在该零件,2表示该零件存在与否均可。输出也为p元组,表示每个零件的输出状态,0表示不存在该零件,1表示存在该零件。先在需要添加线路,例如在①的输出和②的输入添加线路,则允许①的输出从②的输出进入(必须满足②的输入标准),问最大1小时能组装完成多少台电脑?以及需要添加的线路数,及具体的添加方法?

初看题目,感觉非常难懂,也很难想到最大流,手动跑了几组数据后,发现题目就是求从p元组(0,...,0)到p元组(1,...,1)的最大流,然后就可以建图跑最大流即可

首先,将每台机器的输入输出分别看成1个点,则这两点之间存在流量为q的有向边

其次,添加可能会添加的边,即将各机器的输出与其他机器的输入比较,如果输出符合输入标准,则添加流量为无穷的边

然后跑最大流即可,注意每次只记录添加的边即可

最后直接输出结果

刚开始统计路径的方法有点问题,但是随机了很多数据都找不出错,最后终于找到一组数据

输入:
3 27
5361 1 0 1 0 1 1
6146 0 1 0 0 0 1
4141 1 2 0 0 0 1
5481 2 1 2 1 0 0
3740 2 2 1 0 0 1
1473 2 0 0 0 0 1
1734 2 0 2 1 0 1
5668 2 0 1 1 0 0
320 1 1 2 0 0 0
564 0 1 1 1 0 1
2749 0 0 2 0 1 1
7990 2 1 2 0 0 1
1042 1 1 2 1 1 0
2057 0 2 0 1 0 1
8022 1 2 2 1 1 1
664 1 1 0 1 1 0
797 1 0 1 1 0 0
5261 0 0 2 1 1 1
557 0 2 0 1 1 1
4544 0 1 0 1 1 1
4321 0 2 2 1 1 0
3596 1 1 1 1 0 0
7274 0 1 1 0 1 0
7264 2 2 2 0 1 1
9165 1 1 2 1 1 1
4296 2 2 2 0 1 0
6489 2 0 1 1 0 0
输出:
22705 11
4 15 2758
6 8 1473
7 15 1734
8 15 1473
11 4 2501
11 23 248
14 15 2057
21 25 4321
23 20 248
24 4 257
26 20 4296
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int STA=1;
const int DES=0;
const int INF=0x3f3f3f3f;

int p,n,num,q;//num表示状态的个数
int g[105][105],head,tail,pre[105];
int res[55][55];//表示机器i到机器j需要新建res[i][j]的流量
bool vis[105];

struct Status {
    int p[10];
}status[105];

struct Node {
    int pre,u,mn;//pre表示上一个点;u表示当前点;mn表示汇点到该店的最小流量
}que[2705],cur;

bool isOK(const Status& sta,const Status& des) {//判断是否能够连边
    for(int i=0;i<p;++i) {
        if(des.p[i]!=2&&des.p[i]!=sta.p[i]) {
            return false;
        }
    }
    return true;
}

int bfs(int sta,int des) {
    head=tail=0;
    memset(vis,false,sizeof(vis));
    que[tail].pre=-1;
    que[tail].u=sta;
    que[tail++].mn=INF;
    while(head!=tail) {
        do {
            cur=que[head++];
        } while(head!=tail&&vis[cur.u]);
        if(vis[cur.u]) {//如果队列为空还没有未到的点,则无法到达汇点,则不存在增广路径
            return 0;
        }

        vis[cur.u]=true;
        pre[cur.u]=cur.pre;
        if(cur.u==des) {
            return cur.mn;
        }
        for(int i=0;i<num;++i) {
            if(!vis[i]&&g[cur.u][i]!=0) {
                que[tail].pre=cur.u;
                que[tail].u=i;
                que[tail++].mn=min(cur.mn,g[cur.u][i]);
            }
        }
    }
    return 0;
}

int Ford_Fulkerson(int sta,int des) {
    int ans=0,mn,e;
    while(mn=bfs(sta,des),mn!=0) {
        ans+=mn;
        e=des;
        while(e!=sta) {
            g[pre[e]][e]-=mn;
            g[e][pre[e]]+=mn;
            if((pre[e]&1)==1&&(e&1)==0) {//只有为奇数的起点才是output,即正向边
                res[pre[e]>>1][e>>1]+=mn;
            }
            else {//反向边,则要在正向边中减去
                res[e>>1][pre[e]>>1]-=mn;
            }
            e=pre[e];
        }
    }
    return ans;
}

int main() {
    while(2==scanf("%d%d",&p,&n)) {
        memset(g,0,sizeof(g));
        memset(res,0,sizeof(res));
        num=2;
        for(int i=0;i<p;++i) {
            status[STA].p[i]=0;//源点所有部件均为0
            status[DES].p[i]=1;//汇点所有部件均为1
        }
        for(int i=1;i<=n;++i) {
            scanf("%d",&q);
            for(int j=0;j<p;++j) {
                scanf("%d",&status[num].p[j]);
            }
            ++num;
            for(int j=0;j<p;++j) {
                scanf("%d",&status[num].p[j]);
            }
            ++num;
            g[num-2][num-1]=q;
        }
        for(int i=1;i<=n;++i) {//添加边
            if(isOK(status[STA],status[i<<1])) {//源点连上可达的输入
                g[STA][i<<1]=INF;
            }
            for(int j=1;j<=n;++j) {
                if(i!=j&&isOK(status[(j<<1)|1],status[i<<1])) {
                    g[(j<<1)|1][i<<1]=INF;
                }
            }
            if(isOK(status[(i<<1)|1],status[DES])) {//可达的输出连上汇点
                g[(i<<1)|1][DES]=INF;
            }
        }
        int ans=Ford_Fulkerson(STA,DES),cnt=0;
        for(int i=1;i<=n;++i) {
            for(int j=1;j<=n;++j) {
                if(res[i][j]>0) {
                    ++cnt;
                }
            }
        }
        printf("%d %d\n",ans,cnt);
        for(int i=1;i<=n;++i) {
            for(int j=1;j<=n;++j) {
                if(res[i][j]>0) {
                    printf("%d %d %d\n",i,j,res[i][j]);
                }
            }
        }
    }
    return 0;
}
时间: 2024-10-03 05:48:03

POJ-3436 ACM Computer Factory (最大流[Ford-Fulkerson])的相关文章

Poj 3436 ACM Computer Factory (最大流)

题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题思路: 因为需要输出流水线要经过的工厂路径,如果要用电脑状态当做节点的话,就GG了.所以建图的时候要把工厂当做节点.对于节点i,能生产si电脑的节点可以进入节点i,能转化ei电脑的节点可以由i节点进入.要注意对于每一个节点要进行拆点,防止流量发生错误. 1 #include <queue> 2 #

poj 3436 ACM Computer Factory 最大流拆点+输出路径

题目链接: poj3436 题意: 每台ACM 计算机包含P 个部件,当所有这些部件都准备齐全后,计算机就可以组装了,组装好以后就可以交给竞赛队伍使用了.计算机的生产过程是全自动的,通过N 台不同的机器来完成.每台机器从一台半成品计算机中去掉一些部件,并加入一些新的部件(去除一些部件在有的时候是必须的,因为计算机的部件不能以任意的顺序组装).每台机器用它的性能(每小时组装多少台计算机).输入/输出规格来描述. 输入规格描述了机器在组装计算机时哪些部件必须准备好了.输入规格是由P 个整数组成,每个

POJ 3436 ACM Computer Factory(网络最大流)

http://poj.org/problem?id=3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5286   Accepted: 1813   Special Judge Description As you know, all the computers used for ACM contests must be identical, so the particip

POJ 3436 ACM Computer Factory (最大流 + 输出路径)

POJ 3436 ACM Computer Factory 链接:http://poj.org/problem?id=3436 题意:每台电脑有P部分,可以通过不同的机器来进行加工.有N台机器,每台机器用2 P +1 个整数来描述:Qi  Si,1  Si,2 ...  Si,p  Di,1  Di,2. ..  Di,p,其中Qi 指定了机器的性能,表示每小时加工的电脑数量.Si,j 为第j 部分的输入规格,0表示该部分不能被加工过,1表示该部分必须被加工过,2表示都可以.Di,k 为第k 部

18.11.23 POJ 3436 ACM Computer Factory(dinic)

描述 As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory. Every ACM computer consists of P parts. When all the

POJ - 3436 ACM Computer Factory 网络流

POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个位子就要求为1,进去的要求有0,进来的计算机这个位子就要求为0. 思路 因为点上有容量限制,所以把每个点拆掉,连一条容量为这个机器的能力的边.源点向要求为0的机器连容量inf的边,把能完全组装好计算机的机器连向汇点.中间把符合条件的机器间连边,容量为inf: #include <algorithm>

POJ 3436 ACM Computer Factory(最大流+路径输出)

http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性能(每小时组装多少台电脑).输入/输出规格来描述. 输入规格描述了机器在组装计算机时哪些部件必须准备好了.输入规格是由P个整数组成,每个整数代表一个部件,这些整数取值为0.1或2,其中0表示该部件不应该已经准备好了,1表示该部件必须已经准备好了,2表示该部件是否已经准备好了无关紧要. 输出规格描述了

POJ 3436 ACM Computer Factory

最大流+拆点 #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<vector> #include<queue> #include<algorithm> using namespace std; const int maxn = 2000 + 10; const int INF = 0x7FFFFFFF; struct E

POJ - 3436 ACM Computer Factory (ISAP EK Dinic)

题目大意:有N台机器,每台机器能处理相应型态的电脑,处理完后,电脑将变成另一种形态. 每台机器有相应的工作限度,每次至多处理K台 现在问,在一次流水线生产中,最多可以产生多少台完整的电脑(流水线指的是在每一台机器的工作限度下) 解题思路:题目比较难理解,理解题目的话,就比较好做了 首先,将每台机器的点拆成两个点,权值为工作限度 如果机器能处理的电脑的状态全是0的话,就将其和超级源点连接,表示该机器进行第一步加工 如果机器处理完后的形态与另一台机器能处理的最初形态相同,就将其连线,表示下一台机器可

POJ 3436 ACM Computer Factory 【网络流】【北大ACM/ICPC竞赛训练】

我ac掉网络流的第一题! 先总结一下网络流的一些算法吧,首先是Ford-Fulkerson算法,这个算法是保证了众多网络流算法的[正确性],其他算法也是基于其[优化]得到的.Ford的算法在于引入"反向边"的概念,反向边就是反悔边,代表你给修正以前走了的边一个机会.为什么反向边是对的呢,凭空加进来一条边真的大丈夫吗,关于这个有相关正确性的证明,我也说不清楚只能直觉上去理解. 之后是Edmonds-Karp即最短增广路算法,顾名思义,每次都找到达汇点边数最少的增广路,由此避免一些特定的消