Linux SPI总线和设备驱动架构之一:系统概述

SPI是"Serial Peripheral Interface" 的缩写,是一种四线制的同步串行通信接口,用来连接微控制器、传感器、存储设备,SPI设备分为主设备和从设备两种,用于通信和控制的四根线分别是:

  • CS    片选信号
  • SCK  时钟信号
  • MISO  主设备的数据输入、从设备的数据输出脚
  • MOSI  主设备的数据输出、从设备的数据输入脚

因为在大多数情况下,CPU或SOC一侧通常都是工作在主设备模式,所以,目前的Linux内核版本中,只实现了主模式的驱动框架。

/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/

硬件结构



通常,负责发出时钟信号的设备我们称之为主设备,另一方则作为从设备,下图是一个SPI系统的硬件连接示例:

图1.1    SPI硬件结构图

如上图所示,主设备对应SOC芯片中的SPI控制器,通常,一个SOC中可能存在多个SPI控制器,像上面的例子所示,SOC芯片中有3个SPI控制器。每个控制器下可以连接多个SPI从设备,每个从设备有各自独立的CS引脚。每个从设备共享另外3个信号引脚:SCK、MISO、MOSI。任何时刻,只有一个CS引脚处于有效状态,与该有效CS引脚连接的设备此时可以与主设备(SPI控制器)通信,其它的从设备处于等待状态,并且它们的3个引脚必须处于高阻状态。

工作时序



按照时钟信号和数据信号之间的相位关系,SPI有4种工作时序模式:

我们用CPOL表示时钟信号的初始电平的状态,CPOL为0表示时钟信号初始状态为低电平,为1表示时钟信号的初始电平是高电平。另外,我们用CPHA来表示在那个时钟沿采样数据,CPHA为0表示在首个时钟变化沿采样数据,而CPHA为1则表示要在第二个时钟变化沿来采样数据。内核用CPOL和CPHA的组合来表示当前SPI需要的工作模式:

  • CPOL=0,CPHA=1        模式0
  • CPOL=0,CPHA=1        模式1
  • CPOL=1,CPHA=0        模式2
  • CPOL=1,CPHA=1        模式3

软件架构



在内核的SPI驱动的软件架构中,进行了合理的分层和抽象,如下图所示:

图2.1    SPI驱动的软件架构

SPI控制器驱动程序



SPI控制器不用关心设备的具体功能,它只负责把上层协议驱动准备好的数据按SPI总线的时序要求发送给SPI设备,同时把从设备收到的数据返回给上层的协议驱动,因此,内核把SPI控制器的驱动程序独立出来。SPI控制器驱动负责控制具体的控制器硬件,诸如DMA和中断操作等等,因为多个上层的协议驱动可能会通过控制器请求数据传输操作,所以,SPI控制器驱动同时也要负责对这些请求进行队列管理,保证先进先出的原则。

SPI通用接口封装层



为了简化SPI驱动程序的编程工作,同时也为了降低协议驱动程序和控制器驱动程序的耦合程度,内核把控制器驱动和协议驱动的一些通用操作封装成标准的接口,加上一些通用的逻辑处理操作,组成了SPI通用接口封装层。这样的好处是,对于控制器驱动程序,只要实现标准的接口回调API,并把它注册到通用接口层即可,无需直接和协议层驱动程序进行交互。而对于协议层驱动来说,只需通过通用接口层提供的API即可完成设备和驱动的注册,并通过通用接口层的API完成数据的传输,无需关注SPI控制器驱动的实现细节。

SPI协议驱动程序



上面我们提到,控制器驱动程序并不清楚和关注设备的具体功能,SPI设备的具体功能是由SPI协议驱动程序完成的,SPI协议驱动程序了解设备的功能和通信数据的协议格式。向下,协议驱动通过通用接口层和控制器交换数据,向上,协议驱动通常会根据设备具体的功能和内核的其它子系统进行交互,例如,和MTD层交互以便把SPI接口的存储设备实现为某个文件系统,和TTY子系统交互把SPI设备实现为一个TTY设备,和网络子系统交互以便把一个SPI设备实现为一个网络设备,等等。当然,如果是一个专有的SPI设备,我们也可以按设备的协议要求,实现自己的专有协议驱动。

SPI通用设备驱动程序



有时候,考虑到连接在SPI控制器上的设备的可变性,在内核没有配备相应的协议驱动程序,对于这种情况,内核为我们准备了通用的SPI设备驱动程序,该通用设备驱动程序向用户空间提供了控制SPI控制的控制接口,具体的协议控制和数据传输工作交由用户空间根据具体的设备来完成,在这种方式中,只能采用同步的方式和SPI设备进行通信,所以通常用于一些数据量较少的简单SPI设备。

时间: 2024-08-04 15:36:10

Linux SPI总线和设备驱动架构之一:系统概述的相关文章

Linux SPI总线和设备驱动架构之四:SPI数据传输的队列化

我们知道,SPI数据传输可以有两种方式:同步方式和异步方式.所谓同步方式是指数据传输的发起者必须等待本次传输的结束,期间不能做其它事情,用代码来解释就是,调用传输的函数后,直到数据传输完成,函数才会返回.而异步方式则正好相反,数据传输的发起者无需等待传输的结束,数据传输期间还可以做其它事情,用代码来解释就是,调用传输的函数后,函数会立刻返回而不用等待数据传输完成,我们只需设置一个回调函数,传输完成后,该回调函数会被调用以通知发起者数据传送已经完成.同步方式简单易用,很适合处理那些少量数据的单次传

Linux SPI总线和设备驱动架构之三:SPI控制器驱动

通过第一篇文章,我们已经知道,整个SPI驱动架构可以分为协议驱动.通用接口层和控制器驱动三大部分.其中,控制器驱动负责最底层的数据收发工作,为了完成数据的收发工作,控制器驱动需要完成以下这些功能:1.    申请必要的硬件资源,例如中断,DMA通道,DMA内存缓冲区等等:2.    配置SPI控制器的工作模式和参数,使之可以和相应的设备进行正确的数据交换工作: 3.    向通用接口层提供接口,使得上层的协议驱动可以通过通用接口层访问控制器驱动: 4.    配合通用接口层,完成数据消息队列的排

Linux SPI总线和设备驱动架构之一:系统概述【转】

转自:http://blog.csdn.net/droidphone/article/details/23367051/ 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 硬件结构 工作时序 软件架构 SPI控制器驱动程序 SPI通用接口封装层 SPI协议驱动程序 SPI通用设备驱动程序 SPI是"Serial Peripheral Interface" 的缩写,是一种四线制的同步串行通信接口,用来连接微控制器.传感器.存储设备,SPI设备分为主设备和从设备两种,

Linux SPI总线和设备驱动架构之二:SPI通用接口层

通过上一篇文章的介绍,我们知道,SPI通用接口层用于把具体SPI设备的协议驱动和SPI控制器驱动联接在一起,通用接口层除了为协议驱动和控制器驱动提供一系列的标准接口API,同时还为这些接口API定义了相应的数据结构,这些数据结构一部分是SPI设备.SPI协议驱动和SPI控制器的数据抽象,一部分是为了协助数据传输而定义的数据结构.另外,通用接口层还负责SPI系统与Linux设备模型相关的初始化工作.本章的我们就通过这些数据结构和API的讨论来对整个通用接口层进行深入的了解. /**********

让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型

公元1951年5月15日的国会听证上,美国陆军五星上将麦克阿瑟建议把朝鲜战争扩大至中国,布莱德利随后发言:"如果我们把战争扩大到共产党中国,那么我们会被卷入到一场错误的时间,错误的地点同错误的对手打的一场错误的战争中." 写代码,适用于同样的原则,那就是把正确的代码放到正确的位置而不是相反.同样的一个代码,可以出现在多个可能的位置,它究竟应该出现在哪里,是软件架构设计的结果,说白了一切都是为了高内核和低耦合. 1.   陷入绝境 下面我们设想一个名字叫做ABC的简单的网卡,它需要接在一

USB设备驱动架构

1  USB设备驱动架构 这里说的USB设备驱动指的是从主机角度来看,怎样访问被插入的USB设备,而不是指USB设备内部本身运行的固件程序.Linux内核中实现了几类通用的USB设备驱动,主要包括下面几类: (1)音频设备类  (2)通信设备类  (3)HID(人机接口)设备类  (4)显示设备类  (5)海量存储设备类  (6)电源设备类  (7)打印设备类 一般的通用Linux设备(如U盘.USB鼠标.USB键盘等)都不需要工程师再编写驱动,而工程师需要编写的是特定厂商.特定芯片的驱动,而且

《Linux4.0设备驱动开发详解》笔记--第十五章:Linux I2C核心、总线与设备驱动

15.1 Linux I2C体系结构 I2C核心 I2C核心提供了I2C总线驱动和设备驱动的注册.注销的方法,I2C通信(Algorithm)方法上层的与具体适配器无关代码以及探测设备.检测设备地址的上层代码等 I2C总线驱动 是对I2C体系结构中适配器端的实现,适配器可由CPU控制,甚至可以直接集成在CPU内部 总线驱动包含I2C适配器数据结构i2c_adapter.I2C适配器的Algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数 I2C设备驱动 它是对I

乾坤合一~Linux设备驱动之I2C核心、总线以及设备驱动

我思念的城市已是黄昏 为何我总对你一往情深 曾经给我快乐 也给我创伤 曾经给我希望 也给我绝望 我在遥远的城市 陌生的人群 感觉着你遥远的忧伤 我的幻想 你的忧伤,像我的的绝望,那样漫长,,,,,这是今天的旋律,直入心底~~~~~~~~~~~~~~~~ 在Linux 系统中,I2C 驱动由3 部分组成,即I2C 核心.I2C 总线驱动和I2C 设备驱动,I2C 总线仅仅使用SCL.SDA 这两根信号线就实现了设备之间的数据交互,极大地简化了对硬件资源和PCB 板布线空间的占用 1 Linux的I

Linux内核部件分析 设备驱动模型之device

来源:Linux社区 -- http://www.linuxidc.com/Linux/2011-10/44627p6.htm 作者 : qb_2008 linux的设备驱动模型,是建立在sysfs和kobject之上的,由总线.设备.驱动.类所组成的关系结构.从本节开始,我们将对linux这一设备驱动模型进行深入分析. 头文件是include/linux/device.h,实现在drivers/base目录中.本节要分析的,是其中的设备,主要在core.c中. struct device {