常用算法稳定性分析

     排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前两个相等的数据其在序列中的先后位置顺序与排序后它们两个先后位置顺序相同。即:如,如果A i == A j,Ai 原来在 Aj 位置前,排序后 Ai  仍然是在 Aj 位置前。

1、简单总结

  选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法

  冒泡排序、插入排序、归并排序和基数排序都是稳定的排序算法。

2、排序算法稳定性的意义

(1)如果排序算法是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所利用。基数排序就是这样,先按低位排序,逐次按高位排序,那么,低位相同的数据元素其先后位置顺序即使在高位也相同时是不会改变的。

(2)学习排序原理时,可能编的程序里面要排序的元素都是简单类型,实际上真正应用时,可能是对一个复杂类型(自定义类型)的数组排序,而排序的键值仅仅只是这个元素中的一个属性,对于一个简单类型,数字值就是其全部意义,即使交换了也看不出什么不同。

但是,对于复杂类型,交换的话可能就会使原本不应该交换的元素交换了。比如:一个“学生”数组,欲按照年龄排序,“学生”这个对象不仅含有“年龄”,还有其它很多属性。假使原数组是把学号作为主键由小到大进行的数据整理。而稳定的排序会保证比较时,如果两个学生年龄相同,一定不会交换。也就意味着尽管是对“年龄”进行了排序,但是学号顺序仍然是由小到大的要求。

(3)如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能相对会少一些。

3、各种排序算法稳定性分析

(1)冒泡排序:稳定

冒泡排序就是把小的元素往前调(或者把大的元素往后调)。注意是相邻的两个元素进行比较,而且是否需要交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把它们俩再交换一下。如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个元素相邻起来,最终也不会交换它俩的位置,所以相同元素经过排序后顺序并没有改变。

(2)选择排序:不稳定

选择排序即是给每个位置选择待排序元素中当前最小的元素。比如给第一个位置选择最小的,在剩余元素里面给第二个位置选择次小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在选择时,如果当前锁定元素比后面一个元素大,而后面较小的那个元素又出现在一个与当前锁定元素相等的元素后面,那么交换后位置顺序显然改变了。

举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。

(3)插入排序:稳定

插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,也就是第一个元素(默认它有序)。

比较是从有序序列的末尾开始,也就是把待插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面。否则一直往前找直到找到它该插入的位置。如果遇见一个与插入元素相等的,那么把待插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序仍是排好序后的顺序,所以插入排序是稳定的。

(4)快速排序:不稳定

快速排序有两个方向,左边的i下标一直往右走(当条件a[i] <= a[center_index]时),其中center_index是中枢元素的数组下标,一般取为数组第0个元素。

而右边的j下标一直往左走(当a[j] > a[center_index]时)。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。交换a[j]和a[center_index],完成一趟快速排序。

在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11 ,现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱。

所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。

(5)归并排序:稳定

归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。

(6)基数排序:稳定

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。

有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序结果就是高优先级高的在前,高优先级相同的情况下低优先级高的在前。

基数排序基于分别排序,分别收集,所以其是稳定的排序算法。

(7)希尔排序:不稳定

希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序时,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比O(N^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱。

(8)堆排序:不稳定

我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。

但当为n/2-1, n/2-2, ...1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。

时间: 2024-12-11 21:30:35

常用算法稳定性分析的相关文章

【常用算法思路分析系列】字符串高频题集

本文是[常用算法思路分析系列]的第二篇,分析字符串相关的高频题目.第一篇是关于排序相关的高频题,还没有看的同学请移步:[常用算法思路分析系列]排序高频题集 1.KMP字符匹配 对于两棵彼此独立的二叉树A和B,请编写一个高效算法,检查A中是否存在一棵子树与B树的拓扑结构完全相同,即给定两棵二叉树的头结点A和B,请返回一个boolean值,代表A中是否存在一棵同构于B的子树.上述其实就是一个字符匹配的问题,我们将A.B两棵二叉树进行遍历,得到一个字符串,就是判断B串是否是A串的子串.而字符匹配常用的

【常用算法思路分析系列】与二分搜索相关高频题

本文是[常用算法思路分析系列]的第五篇,总结二分搜索相关的高频题目和解题思路.本文分析如下几个问题:1.求数组局部最小值问题:2.元素最左出现的位置:3.循环有序数组求最小值:4.最左原位:5.完全二叉树计算结点数:6.快速N次方. 本系列前四篇导航: [常用算法思路分析系列]排序高频题集 [常用算法思路分析系列]字符串高频题集 [常用算法思路分析系列]栈和队列高频题集(修改版) [常用算法思路分析系列]链表相关高频题集 二分搜索的重要提醒: 一般我们选择中点进行搜索,会写成mid = (lef

【常用算法思路分析系列】排序高频题集

最近在牛客上整理常用的一些算法思路,[常用算法思路分析系列]主要是针对一些高频算法笔试.面试题目的解题思路进行总结,大部分也给出了具体的代码实现,本篇文章是对排序相关题目的思路分析. 1.简单分类 首先对一些常用算法按空间复杂度进行分类如下: O(1): 冒泡排序.选择排序.插入排序.希尔排序.堆排序 O(logN)~O(N): 快速排序 O(N): 归并排序 O(M): 计数排序.基数排序 2.对一个基本有序的有序的数组排序,选择哪种排序算法? 基本有序:指如果把数组排好序的话,每个元素移动的

【常用算法思路分析系列】栈和队列高频题集(修改版)

本文是[常用算法思路分析系列]的第三篇,分析栈和队列相关的高频题目.本文分析:1.可查询最值的栈:2.用两个栈实现队列的功能:3.反转栈中元素:4.排序栈中元素:5.滑动窗口问题. 本系列前两篇导航: [常用算法思路分析系列]排序高频题集 [常用算法思路分析系列]字符串高频题集 1.可查询最值的栈 定义栈的数据结构,请在该类型中实现一个能够得到栈最小元素的min函数. 思路: 定义两个栈stackData和stackMin,其中stackData用来存放进栈的数据,stackMin用来存放进栈过

【常用算法思路分析系列】链表相关高频题集

本文是[常用算法思路分析系列]的第四篇,总结链表相关的高频题目和解题思路.本文分析如下几个问题:1.环形链表的差值问题:2.只能访问单个结点的删除问题:3.链表的分化:4.打印两个链表的公共部分:5.把链表的每k个结点逆序:6.删除链表中指定结点:7.判断链表是否为回文结构:8.复杂链表的复制:9.判断链表是否有环:10.判断两个无环链表是否相交:11.判断两个有环链表是否相交:12.判断两个链表(状态未定)是否相交. 本系列前三篇导航: [常用算法思路分析系列]排序高频题集 [常用算法思路分析

数据结构——排序——8种常用排序算法稳定性分析

首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同.在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前. 其次,说一下稳定性的好处.排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用.基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的.另外,如果排序算法稳定,对基于比较的排序算法而言

常用排序算法 - 稳定性和复杂度分析

一.前言 上一篇,只是简单的记录了常用算法的主要思想以及代码实现( 常用算法记录 ); 这次简单的记录一下算法的稳定性以及复杂度 二.稳定性 1. 稳定性的定义 如果两个相等的数据的先后位置,排序前后保持不变的话,那就是稳定的,反之,就是不稳定: 例如:A[i] == A[j] , A[i]的位置在A[j]之前,排序后,A[i]的位置依然在A[j]之前: 2. 稳定性的好处 (1)如果排序算法是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所利用. 基数

排序算法的时空复杂度、稳定性分析

1.基本概念 2.时空复杂度 3.稳定性 4.使用情况分析 排序算法总结(C语言版)已介绍排序算法的基本思想和C语言实现,本文只介绍时空复杂度和稳定性. 1.基本概念 时间复杂度: 一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法的语句执行次数称为语句频度或时间频度.记为T(n).n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化.但有时我们想知道它变化时呈现什么规律,为此,引入时间复杂度概念.若有某个辅助函数f(n),使得当n趋近

Python常用算法

本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一个算法应该具有以下七个重要的特征: ①有穷性(Fin