Python最佳编码实践

译自: http://www.fantascienza.net/leonardo/ar/python_best_practices.html

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

有时候,甚至优秀的程序员在他们首次尝试用Python时,会很少使用最佳方案和数据结构。在过去数年中,Python也逐渐累积了一些诸如:冗余,缺点等瑕疵(它们中的一部分会从Python3.0中移除,这篇文章主要基于Python 2.5,不针对之后的版本,比如说Python 2.6,同样不针对Jython 或 PyPy 或 IronPython 它们之间有点微妙的差异),但是总而言之,Python依然是非常干净、简洁的语言,本文也像这样,目的是为了让你避免程序开发实践中最可能碰到的误区。本文同样简短,你甚至能发现在线解释。

当然啦,我也许可能是错误的,但该页(文)来自一些练习,因此当你不同意我观点的时候,我建议你通过邮件组或者网页去查找答案,而不是想当然的自以为是。如果你的确发现我错误,或者有任何建议,看法。请通过邮件练习我们,我们会非常高兴,并改正错误.


差的代码格式

好的代码格式
x=5

if ( (x==8) and (y>5) ) : ...

1<<5&2

return(5);

while (x<5) : ...

7.

x = 5

if x == 8 and y > 5: ...

(1 << 5) & 2

return 5

while x < 5: ...

7.0

print x,x*x+1

v[i + 1 + a] + v[i + 2 + b]

# 有时候规则可以打破,比如要展示组的时候,可以下面这样

print x, x*x + 1

v[i+a+1] + v[i+b+2]

def Function ( x ): ... def function(x): ...
class fooclass: ... class Fooclass(object): ...
d = dict() freqs = {}

# 变量最好用描述性名称

# 小范围来说,短的变量名业务不错的选择。

list = [1, 2, 3]

dict = {‘alpha‘: 0x1234}

sum = x + y

# 不要用内置的保留字来做变量名

values = [1, 2, 3]

symbol_address = {‘alpha‘: 0x1234}

tot = x + y

"some string" and ‘some string‘ and

"""some string""" and ‘‘‘some string‘‘‘

# 上述的格式是一样,一样,一样的

mapping = { 5 :"5", 6:"6" } mapping = {5: "5", 6: "6"}
mapping = {5 : "5", 6 : "6"}

if mapping.has_key(6): ...

mapping = {5: "5", 6: "6"}

if 6 in mapping: ...

def function( x, l = [] ): ... # 通常不用可变对象,比如列表来做默认值

def function(x, items=None): ...

if items is None:

items = []

if x == None: ... if x is None: ...
x = 1

if z > 5:

var1 = 55

# 总是用4个空格作为缩进

# (或者总是用TAB键作为缩进,但这样同样不好)

x = 1

if z > 5:

var1 = 55

mapping = {5 : "5", 6 : "6"}

for key, val in mapping.items(): ...

for key in mapping.keys(): ...

# 尽可能使用iter*开头的迭代方法

mapping = {5: "5", 6: "6"}

for key, val in mapping.iteritems(): ...

for key in mapping: ...

for i in range(10, 20000): ... for i in xrange(10, 20000): ...
# Use to denote the code that has to

# run when a module is executed and not

# imported:

if __name__ == ‘__main__‘:

# Python profiler:

python -m profile -o stats myscript.py

>>> import pstats

>>> p = pstats.Stats(‘stats‘)

>>> p.sort_stats(‘time‘).print_stats(15)

对于含非ASCII编码的字符,在首行添加:

# -*- coding: UTF-8 -*-

# 或者如果你电脑内存不足,就干脆使用latin编码

# coding: latin

al = [1, 2, 3]

for i in xrange(len(al)-1, -1, -1):

del al[i]

items = [1, 2, 3]

del items[:]

# 如果程序速度不是最重要的话,可以仅仅新增加以个空列表:

items = []

# 如果你只想移除一个列表的引用值时,可以使用:

del items

repeat

xxx

until yyy

# 等价于:

while True

xxx

if yyy: break

# 增加一个包含所需模块压缩文件到搜索路径中

sys.path.append("some.zip")

a = 5

b = 6

aux = a

a = b

b = aux

a = 5

b = 6

a, b = b, a # 两个变量交换值,无需中间变量

if x < 10 and x > 2: ... if 2 < x < 10: ...
a = 5

b = 5

c = 5

a = b = c = 5
if x == 1: y = fun1(x)

else if x == 2: y = fun2(x)

else if x == 3: y = fun3(x)

else: y = None

if x == 1: y = fun1(x)

elif x == 2: y = fun2(x)

elif x == 3: y = fun3(x)

else: y = None

# 但又时候,使用字典无疑更好些:

funs = {1: fun1, 2: fun2, 3: fun3}

y = funs.get(x, lambda x:None)(x)

mapping = {5 : "5", 6 : "6"}

for key in mapping.iterkeys(): ...

mapping = {5: "5", 6: "6"}

for key in mapping: ...

al = [1, 2, 3]

for i in xrange(len(al)):

print al[i]

al = [1, 2, 3]

for el in al:

print el

al = [1, 2, 3]

for i in xrange(len(al)-1, -1, -1):

print al[i]

al = [1, 2, 3]

for el in reversed(al):

print el

class Test(object):

def __init__(I, x): ...

class Test(object):

def __init__(self, x): ...

# Compute the sum of the ...

def sum_of(x, y, z): ...

def sum_of(x, y, z): ...

"""Compute the sum of the ..."""

from operator import add

sl = ["ab", "cd", "ef"]

all = ""

for s in sl:

all += s

# Or:

sl = ["ab", "cd", "ef"]

all = reduce(lambda x,y: x+y, sl, "")

sl = ["ab", "cd", "ef"]

all = "".join(sl)

a = "this isn‘t a word, right?"

a = a.replace("‘", " ")

a = a.replace(".", " ")

a = a.replace("?", " ")

a = a.replace(",", "")

# 用.来代替,效果及速度更快些

from string import maketrans

tab = maketrans("‘.?", "   ")

a = "this isn‘t a word, right."

afilt = a.translate(tab, ",")

values = ["stop",0,0] values = ["stop", 0, 0]
def mul(x, y): return x*y

l = [2, 3]

print apply(mul, l)

def mul(x, y):

return x * y

l = [2, 3]

print mul(*l)

vals = [2, 3, -5, 0]

result = []

for el in vals:

if el > 0:

result.append(el * el)

vals = [2, 3, -5, 0]

result = [el * el for el in vals if el > 0]

l = [0] * 4

m = [l] * 4

m[1][1] = 5

print m

# 一个正确的做法是创建一个矩阵:

m = [[0] * 4 for _ in xrange(4)]

m[1][1] = 5

print m

a = 1

print a / 2, a / float(2)

# 一种可替代方案:

from __future__ import division

a = 1

print a // 2, a / 2

class Foo(object):

def __init__(self, x, y, z):

self.x_public = x

self.y_private = y

self.z_veryprivate = z

def getx(self):

return self.x_public

print Foo(1, 2, 3).getx()


# Generally getters and setters are not used.

# Instance names starting with _ are meant as

# ‘to not mess with‘ by convention.

# Instance names starting with __ are private

# and receive name mangling.

class Foo(object):

def __init__(self, x, y, z):

self.x_public = x

self._y_private = y

self.__z_veryprivate = z

print Foo(1, 2, 3).x_public

finder = re.compile("^\s*([\[\]])\s*([-+]?\d+)

\s*,\s*([-+]?\d+)\s*([\[\]])\s*$")

finder = re.compile(r"""

^ \s*             # start at beginning+ opt spaces

( [\[\]] )        # Group 1: opening bracket

\s*           # optional spaces

( [-+]? \d+ ) # Group 2: first number

\s* , \s*     # opt spaces+ comma+ opt spaces

( [-+]? \d+ ) # Group 3: second number

\s*           # opt spaces

( [\[\]] )        # Group 4: closing bracket

\s* $             # opt spaces+ end at the end

""", flags=re.VERBOSE)

# 上面的关于正则表达式代码就很容易读懂.

# 每行就像代码一样.

# 下面是另外一个不错的关于正则表达式排版方式:

spaces = r"\s*"            # optional spaces

number = r"( [-+]? \d+ )"  # Group

bracket = r"( [\[\]] )"    # Group. Closing bracket

parts = ["^", bracket, number, ",", number, bracket, "$"]

finder = re.compile(spaces.join(parts), flags=re.VERBOSE)

def function(data):

"""A comment"""

...implementation...

# 使用doctests模块(或者tests模块):

def function(data):

"""A comment

>>> function()

None

>>> function(1)

result1

>>> function("a")

Traceback (most recent call last):

...

TypeError

"""

...implementation...

if __name__ == "__main__":

import doctest

doctest.testmod()

print "Tests done."

x = (1, 2, 6, 55, 63, 96, 125, 256, \

301, 456, 958, 1256, \

1359, 2568, 3597)

x = (1, 2, 6, 55, 63, 96, 125, 256,

301, 456, 958, 1256,

1359, 2568, 3597)

# 太多的行,必须用\来作为分割符

# 但\在() [] {}中是不必要的

from Tkinter import *

from mymodule import *

import Tkinter as tk

from mymodule import fun1, Class1, baseconvert as bc

import psyco

psyco.bind(myfun1)

a = [3.56, 2.12]

try:

import psyco

# psyco中的类非常有用

from psyco.classes import __metaclass__

psyco.bind(myfun1)

except ImportError: pass

# 使用psyco array.array中

# 双精度值可以更快些

import array

a = array.array("d", [3.56, 2.12])

# 在一些情形下,使用字符串数组同样很快

# psyco同map,filter,生成器一起使用也会很慢 can be slow with itertools, map, filter

# 但会比列表解析快

# 最快的Psyco是使用低级别的编码格式

  # 打印一个不包含空格的字符串:

from sys import stdout

stdout.write(string1)

stdout.write(string2)

  This is good enough:

words = [‘me‘, ‘do‘ ‘bye‘, ‘taz‘, ‘foo‘, ‘bar‘]

A shorter, more readable, but slower alternative:

words = ‘me do bye taz foo bar‘.split()

# sorting on the second item of the tuple

# try to remove the i index from the temporary tuples

lp = [(5J,"b"),(2J,"c"),(3+1J,"a"),(1+2J,"a")]

lp2 = [(c, i, n) for i,(n, c) in enumerate(lp)]

lp2.sort()

print [(n, c) for (c, i, n) in lp2]

from operator import itemgetter

lp = [(5J, "b"), (2J, "c"), (3+1J, "a"), (1+2J, "a")]

print sorted(lp, key=itemgetter(1))

vals = [5, 7 ,8]

tot = -2.0

for v in vals:

tot += v

vals = [5, 7 ,8]

tot = sum(vals, -2.0)

ll = [[1, 2, 3], [4], [5, 6]]

print sum(ll, [])

data = [[1, 2, 3], [4], [5, 6]]

result = []

for sublist in data:

result.extend(sublist)

# 最快速度实现

from itertools import imap

data = [[1, 2, 3], [4], [5, 6]]

result = [None] * sum(imap(len, data))

pos = 0

for sublist in data:

lensl = len(sublist)

result[pos : pos+lensl] = sublist

pos += lensl

print "%s %s" % (string1, string2)

print ‘"‘ + chr(c) + ‘":‘, freq[c]

print string1, string2

print ‘"%c": %d‘ % (c, freq[c])

[‘ ‘, c][c.isalpha()] # Python 2.5以上版本支持:

(c if c.isalpha() else ‘ ‘)

# 如何反转一个字符串,列表等.

alist[::-1]

astring[::-1]

# To negate (inplace) each second

#  element of alist:

result = []

for (i, v) in enumerate(alist):

# faster than i % 2

if i & 1 == 0:

result.append(v)

else:

result.append(-v)

alist[:] = result

from operator import neg

alist[1::2] = map(neg, alist[1::2])

# 下面方式虽慢点,但是易读:

alist[1::2] = [-el for el in alist[1::2]]

# 隐式拷贝一个字典或列表:

# (元祖无需拷贝)

newlist = list(alist)

newdict = dict(adict)

# 或者仅仅是:

newlist = list[:]

import sys

sys.exit()

# 停掉一个控制台:

raise SystemExit

#或者仅仅是:

exit()

if type(s) == type(""): ...

if type(seq) == list or \

type(seq) == tuple: ...

if isinstance(s, basestring): ...

if isinstance(seq, (list, tuple)): ...

# Or even:

if hasattr(seq, "__getitem__"): ...

# But quite often in dynamic languages you

# don‘t test types, you just use them (look

# for duck typing), catching exception that

# may occur.

name1 = 5; name2 = 20; print name2

a = 1

b = 2

c = 3

name1 = 5

name2 = 20

print name2

a, b, c = 1, 2, 3

prima = 1

rossa = "Il colore rosso"

léger = 30

# 只能用英文字母做变量名:

first = 1

red = "Il colore rosso"

light = 30

__del__ method of classes is

usually left undefined.

try:

fin = file("absent_file.txt")

except:

...

try:

something()

except:

...

# 通常的声明异常并捕获:

try:

fin = file("absent_file.txt")

except IOError:

...

try:

something()

except someException:

...

except ImportError, IOError: ... except (ImportError, IOError): ...
bytes = array.array(‘B‘, [0] * nbytes)

# 或者:

from itertools import repeat

bytes = array.array(‘B‘, repeat(0, nbytes))

# 下面的方式更快些

bytes = array.array(‘B‘, [0]) * nbytes

freqs = {}

for c in "abracadabra":

try:

freqs[c] += 1

except:

freqs[c] = 1

# 简单方式:

freqs = {}

for c in "abracadabra":

freqs[c] = freqs.get(c, 0) + 1

# 常用方式:

freqs = {}

for c in "abracadabra":

if c in freqs:

freqs[c] += 1

else:

freqs[c] = 1

# 或者在Python 2.5以上版本使用:

from collections import defaultdict

freqs = defaultdict(int)

for c in "abracadabra":

freqs[c] += 1


someitems = set([1, 2, 3])

somemap = {1:2, 3:4, 5:6}

print list(someitems)[0]

print list(somemap)[0]

someitems = set([1, 2, 3])

somemap = {1: 2, 3: 4, 5: 6}

print iter(someitems).next()

print iter(somemap).next()

from time import clock # 下面的导入方式在Windows和LINUX下都工作正常:

from timeit import default_timer as clock

# 或者经常使用timeit模块来计算程序运行时间

请同时参阅Python代码规范: http://www.python.org/dev/peps/pep-0008/

时间: 2024-10-11 23:39:16

Python最佳编码实践的相关文章

PYTHON 最佳实践指南(转)

add by zhj: 本文参考了The Hitchhiker's Guide to Python,当然也加入了作者的一些东西.The Hitchhiker's Guide to Python 的github地址是https://github.com/kennethreitz/python-guide,貌似还能用pip安装该包.先占个坑,后面有时间再把文章转过来 原文:PYTHON 最佳实践指南

Python数据分析基础与实践 Python数据分析实践课程 Python视频教程

课程简介: Python数据分析基础与实践 Python数据分析实践课程 Python视频教程----------------------课程目录------------------------------├<章节1Python概况>├<章节2Python安装>├<章节3数据准备>├<章节4数据处理>├<章节5数据可视化>├<章节6网页数据抓取>├<章节7连接MySQL>├<章节8数据分析> 下载地址:百度网盘

分享《Python机器学习实践指南》(高清中文版PDF+高清英文版PDF+源代码)

下载:https://pan.baidu.com/s/11dGldpITOoUUJmS9eD5ENw Python机器学习实践指南(高清中文版PDF+高清英文版PDF+源代码) 中文和英文两版对比学习, 带目录书签,可复制粘贴:讲解详细并配有源代码. 其中,高清中文版如图: 原文地址:http://blog.51cto.com/3215120/2301528

分享《Python机器学习实践指南》+PDF+源码+Alexanfer T.Combs+黄申

下载:https://pan.baidu.com/s/1nb-Q7MtQ2dfBbx2Dir-rQA 更多资料分享:http://blog.51cto.com/14087171 Python机器学习实践指南(高清中文版PDF+高清英文版PDF+源代码) 高清中文版PDF,268页,带目录书签,彩色配图,文字可复制粘贴: 高清英文版PDF,324页,带目录书签,彩色配图,文字可复制粘贴: 中文和英文两版对比学习: 讲解详细并配有源代码. 其中,高清中文版如图: 原文地址:http://blog.5

Python入门经典. 以解决计算问题为导向的Python编程实践(高清版)PDF

Python入门经典. 以解决计算问题为导向的Python编程实践(高清版)PDF百度网盘链接:https://pan.baidu.com/s/1juLsew8UiOErRheQPOuTaw 提取码:fssd 复制这段内容后打开百度网盘手机App,操作更方便哦内容简介 · · · · · · <Python入门经典:以解决计算问题为导向的Python编程实践>是一本系统而科学的Python入门教程,美国密歇根州立大学等多所美国知名高校采用其作为编程语言的入门教材,被奉为经典.它不仅从计算机教学

机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码

机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致. 共有10 章.第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法.数据可视化技术.推荐引擎等,主要包括机器学习在公寓.机票.IPO 市场.新闻源.内容推广.股票市场.

随笔记:Python初实践

有一同事要离职了,我负责交接一个用Python同步数据的项目. 之前木有做过Python,周休,做个简单的查询数据库,小练一下手. 包含: 安装 连接.查询MySQL 列表 元组 for循环 while循环 下载 上Python官方网站,下载Python安装包,目前流行的版本为2.7和3.x版本,这两个大版本之间语法有些差异,并不兼容. 这次项目用到的是2.7版本,所以,先学习此. 目前,下载页面为:https://www.python.org/downloads/release/python-

Python 最佳实践指南

粗粗粗略地过了一遍,大体捞了一些东西出来,大段大段英文太费眼了,回头细读在更新进来 浓缩版,20分钟可大体过完,然后根据自己需要去看详细的吧 整体内容还是很不错的,建议细读英文 PS:文档含有巨量的TODO(没写空白着待补充的),不过但从目录上来看还是很强大滴,相信完善后,会成为一份很牛逼的指南(难度比官方指南高一点点) 第零部分 Getting Started 链接 不解释,不翻译,自个看….真的没啥(每本入门书籍第一章…) 第一部分 Writing Great Code Structurin

Python 最佳实践

前言 对我来说,以前每次面试是我审视自己,检验自己的一种方式.每次准备面试,以及被面试官问住的时候才会发现,其实我python我学的还不够好.工作中也是,可以从其他的同事那里获得成长.但是我今天说的是,我也在自己总结和思考最佳实践这件事. 我想很多人都会有意识的去读一些PEP(Python Enhancement Proposals).了解语言设计者当时的考虑,这些文案也是经过很长时间的讨论最后才实施的.既然想用好这门语言,必然需要理解设计之美.比如我听说gvanrossum使用emacs作为编