Robberies(01背包)

Problem Description

The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before
retiring to a comfortable job at a university. [center][img]../../../data/images/con211-1010-1.jpg[/img][/center] For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk,
and grab as much money as possible. His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

Input

The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line
j gives an integer Mj and a floating point number Pj . Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .

Output

For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set. Notes and Constraints 0 < T <= 100 0.0 <= P <= 1.0 0 < N <= 100 0 < Mj <= 100 0.0 <= Pj <= 1.0 A bank
goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

Sample Input

3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05

Sample Output

2
4
6
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
double  dp[40000], v[400];
//double
int w[400];
int t;
double p,n,e,sum;
int main()
{
    cin>>t;
    while (t--)
    {
        cin>>e>>n;
        memset(dp,0,sizeof(dp));
        sum=0;
        for (int i = 0; i <n; i++) {
           cin>>w[i]>>v[i];
           sum+=w[i];
        }
        p = 1-e;
        dp[0]=1;
        for (int i = 0; i <n; i++)
            for (int j = sum; j >= w[i]; j--)
             {
                 dp[j] = max(dp[j], dp[j - w[i]]*(1-v[i]));
                // if(dp[j]<dp[j-w[i]]*(1-v[i]))
                //    dp[j]=dp[j-w[i]]*(1-v[i]);
             }
        for(int i=sum;i>=0;i--)
        if(dp[i]>=p){
            cout<<i<<endl;
           break;
        }
    }
    return 0;
}

Robberies(01背包)

时间: 2024-10-14 09:58:36

Robberies(01背包)的相关文章

HDU 2955 Robberies --01背包变形

这题有些巧妙,看了别人的题解才知道做的. 因为按常规思路的话,背包容量为浮点数,,不好存储,且不能直接相加,所以换一种思路,将背包容量与价值互换,即令各银行总值为背包容量,逃跑概率(1-P)为价值,即转化为01背包问题. 此时dp[v]表示抢劫到v块钱成功逃跑的概率,概率相乘. 最后从大到小枚举v,找出概率大于逃跑概率的最大v值,即为最大抢劫的金额. 代码: #include <iostream> #include <cstdio> #include <cstring>

HDU 2955 Robberies (01背包)

Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 11297    Accepted Submission(s): 4190 Problem Description The aspiring Roy the Robber has seen a lot of American movies, and knows that

【hdu2955】 Robberies 01背包

hdu2955 http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意:盗贼抢银行,给出n个银行,每个银行有一定的资金和抢劫后被抓的概率,在给定一个概率P,表示盗贼愿意冒险抢劫所能承受的最大被抓概率. 思路:首先用1减去被抓概率,得到安全概率.那抢劫了多家银行后的安全概率就是这些银行各自的安全概率连乘起来.其实是01背包的变种, dp[j] 表示获得金额 j 时的安全概率.这里用滚动数组,得方程  dp[j] = max(dp[j], dp[i-a[i

hdu 2955 Robberies 0-1背包/概率初始化

/*Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 13854 Accepted Submission(s): 5111 Problem Description The aspiring Roy the Robber has seen a lot of American movies, and knows that the

hdu 2955 Robberies (01背包好题)

Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 31769    Accepted Submission(s): 11527 Problem Description The aspiring Roy the Robber has seen a lot of American movies, and knows that

Robberies 01背包变形 hdoj

在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包.不能讲物品i装入多次,也不能只装入物品的一部分.因此,该问题被称为0-1背包问题. 将小偷计划要偷的钱的总数作为背包的容量,然后每个银行的存款就作为各个物品的重量, 每个银行小偷的逃跑率就作为每个物品的价值,这样就转化为01背包问题了. 至于为什么不可以用题目给的被抓获的概率作为价值,是因为小偷被抓与否的计算方法, 不是将每个银行小偷被抓的概率相乘,概率论的基本知识,所以要以逃跑率作为价值. 定义数组 F[j]为偷到j万元的时候

HDU 2955 Robberies(01 背包)

#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; struct Node { int m; double p; }; Node bank[200]; double dp[100000]; int main() { int t,n; double p; int i,j,k; scanf("%d",&am

hdu 2955 Robberies(01背包)

Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 17723    Accepted Submission(s): 6544 Problem Description The aspiring Roy the Robber has seen a lot of American movies, and knows that

01背包水题篇之 HDU2955——Robberies

原来是想dp[i],表示不被抓概率为i所能抢到的最大钱(概率1-100) 后来看了别人的博客是dp[i]表示抢了i钱最大的不被抓概率,嗯~,弱菜水题都刷不动. 那么状态转移方程就是 dp[i]=max(dp[i],dp[i-money]*p),初始化dp(0~maxn)为0,dp[0]=1(1毛钱都没抢你抓个毛线啊,哥是良民~) 又是贴代码环节~ <span style="font-size:18px;">#include<iostream> #include&

Robberies hdu 2955 01背包

Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 10933    Accepted Submission(s): 4049 Problem Description The aspiring Roy the Robber has seen a lot of American movies, and knows that