python多线程(二)

原文:http://blog.sina.com.cn/s/blog_4b5039210100esc1.html

基础不必多讲,还是直接进入python。

Python代码代码的执行由python虚拟机(也叫解释器主循环)来控制。Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行,就像单CPU的系统中运行多个进程那样,内存中可以存放多个程序,但任意时候,只有一个程序在CPU中运行。同样,虽然python解释器可以“运行”多个线程,但在任意时刻,只有一个线程在解释器中运行。

对python虚拟机的访问由全局解释器锁(GIL)来控制,这个GIL能保证同一时刻只有一个线程在运行。在多线程环境中,python虚拟机按以下方式执行:

1 设置GIL

2 切换到一个线程去运行

3 运行:(a.指定数量的字节码指令,或者b.线程主动让出控制(可以调用time.sleep()))

4 把线程设置为睡眠状态

5 解锁GIL

6 重复以上所有步骤

那么为什么要提出多线程呢?我们首先看一个单线程的例子。

from time import sleep,ctime

def loop0():

print ‘start loop 0 at:‘,ctime()

sleep(4)

print ‘loop 0 done at:‘,ctime()

def loop1():

print ‘start loop 1 at:‘,ctime()

sleep(2)

print ‘loop 1 done at:‘,ctime()

def main():

print ‘starting at:‘,ctime()

loop0()

loop1()

print ‘all DONE at:‘,ctime()

if __name__==‘__main__‘:

main()

运行结果:

>>>

starting at: Mon Aug 31 10:27:23 2009

start loop 0 at: Mon Aug 31 10:27:23 2009

loop 0 done at: Mon Aug 31 10:27:27 2009

start loop 1 at: Mon Aug 31 10:27:27 2009

loop 1 done at: Mon Aug 31 10:27:29 2009

all DONE at: Mon Aug 31 10:27:29 2009

>>>

可以看到单线程中的两个循环, 只有一个循环结束后另一个才开始。  总共用了6秒多的时间。假设两个loop中执行的不是sleep,而是一个别的运算的话,如果我们能让这些运算并行执行的话,是不是可以减少总的运行时间呢,这就是我们提出多线程的前提。

Python中的多线程模块:thread,threading,Queue。

1  thread ,这个模块一般不建议使用。下面我们直接把以上的例子改一下,演示一下。

from time import sleep,ctime

import thread

def loop0():

print ‘start loop 0 at:‘,ctime()

sleep(4)

print ‘loop 0 done at:‘,ctime()

def loop1():

print ‘start loop 1 at:‘,ctime()

sleep(2)

print ‘loop 1 done at:‘,ctime()

def main():

print ‘starting at:‘,ctime()

thread.start_new_thread(loop0,())

thread.start_new_thread(loop1,())

sleep(6)

print ‘all DONE at:‘,ctime()

if __name__==‘__main__‘:

main()

运行结果:

>>>

starting at: Mon Aug 31 11:04:39 2009

start loop 0 at: Mon Aug 31 11:04:39 2009

start loop 1 at: Mon Aug 31 11:04:39 2009

loop 1 done at: Mon Aug 31 11:04:41 2009

loop 0 done at: Mon Aug 31 11:04:43 2009

all DONE at: Mon Aug 31 11:04:45 2009

>>>

可以看到实际是运行了4秒两个loop就完成了。效率确实提高了。

2 threading模块

首先看一下threading模块中的对象:

Thread    :表示一个线程的执行的对象

Lock     :锁原语对象

RLock    :可重入锁对象。使单线程可以再次获得已经获得的锁

Condition  :条件变量对象能让一个线程停下来,等待其他线程满足了某个“条件”,如状态的改变或值的改变

Event     :通用的条件变量。多个线程可以等待某个事件发生,在事件发生后,所有的线程都被激活

Semaphore  :为等待锁的线程提供一个类似“等候室”的结构

BoundedSemaphore  :与semaphore类似,只是它不允许超过初始值

Timer       :  与Thread类似,只是,它要等待一段时间后才开始运行

其中Thread类是你主要的运行对象,它有很多函数,用它你可以用多种方法来创建线程,常用的为以下三种。

创建一个Thread的实例,传给它一个函数

创建一个Thread实例,传给它一个可调用的类对象

从Thread派生出一个子类,创建一个这个子类的实例

Thread类的函数有:

getName(self)  返回线程的名字

|

|  isAlive(self)  布尔标志,表示这个线程是否还在运行中

|

|  isDaemon(self)  返回线程的daemon标志

|

|  join(self, timeout=None) 程序挂起,直到线程结束,如果给出timeout,则最多阻塞timeout秒

|

|  run(self)  定义线程的功能函数

|

|  setDaemon(self, daemonic)  把线程的daemon标志设为daemonic

|

|  setName(self, name)  设置线程的名字

|

|  start(self)   开始线程执行

下面看一个例子:(方法一:创建Thread实例,传递一个函数给它)
import threading

from time import sleep,ctime

loops=[4,2]

def loop(nloop,nsec):

print ‘start loop‘,nloop,‘at:‘,ctime()

sleep(nsec)

print ‘loop‘,nloop,‘done at:‘,ctime()

def main():

print ‘starting at:‘,ctime()

threads=[]

nloops=range(len(loops))

for i in nloops:

t=threading.Thread(target=loop,args=(i,loops[i]))

threads.append(t)

for i in nloops:

threads[i].start()

for i in nloops:

threads[i].join()

print ‘all done at:‘,ctime()

if __name__==‘__main__‘:

main()

可以看到第一个for循环,我们创建了两个线程,这里用到的是给Thread类传递了函数,把两个线程保存到threads列表中,第二个for循环是让两个线程开始执行。然后再让每个线程分别调用join函数,使程序挂起,直至两个线程结束。

另外的例子:(方法二:创建一个实例,传递一个可调用的类的对象)

import threading

from time import sleep,ctime

loops=[4,2]

class ThreadFunc(object):

def __init__(self,func,args,name=‘‘):

self.name=name

self.func=func

self.args=args

def __call__(self):

self.res=self.func(*self.args)

def loop(nloop,nsec):

print ‘start loop‘,nloop,‘at:‘,ctime()

sleep(nsec)

print ‘loop‘,nloop,‘done at:‘,ctime()

def main():

print ‘starting at:‘,ctime()

threads=[]

nloops=range(len(loops))

for i in nloops:

t=threading.Thread(target=ThreadFunc(loop,(i,loops[i]),loop.__name__))

threads.append(t)

for i in nloops:

threads[i].start()

for i in nloops:

threads[i].join()

print ‘all done at:‘,ctime()

if __name__==‘__main__‘:

main()

最后的方法:(方法三:创建一个这个子类的实例)

import threading

from time import sleep,ctime

loops=(4,2)

class MyThread(threading.Thread):

def __init__(self,func,args,name=‘‘):

threading.Thread.__init__(self)

self.name=name

self.func=func

self.args=args

def run(self):

apply(self.func,self.args)

def loop(nloop,nsec):

print ‘start loop‘,nloop,‘at:‘,ctime()

sleep(nsec)

print ‘loop‘,nloop,‘done at:‘,ctime()

def main():

print ‘starting at:‘,ctime()

threads=[]

nloops=range(len(loops))

for i in nloops:

t=MyThread(loop,(i,loops[i]),loop.__name__)

threads.append(t)

for i in nloops:

threads[i].start()

for i in nloops:

threads[i].join()

print ‘all done at:‘,ctime()

if __name__==‘__main__‘:

main()

另外我们可以把MyThread单独编成一个脚本模块,然后我们可以在别的程序里导入这个模块直接使用。

python多线程(二)

时间: 2024-10-18 07:25:16

python多线程(二)的相关文章

python 多线程编程

一)线程基础 1.创建线程: thread模块提供了start_new_thread函数,用以创建线程.start_new_thread函数成功创建后还能够对其进行操作. 其函数原型: start_new_thread(function,atgs[,kwargs]) 其參数含义例如以下: function: 在线程中运行的函数名 args:元组形式的參数列表. kwargs: 可选參数,以字典的形式指定參数 方法一:通过使用thread模块中的函数创建新线程. >>> import th

Python多线程问题的资料查找与汇总by tsy

声明: 1)本报告由博客园bitpeach撰写,版权所有,免费转载,请注明出处,并请勿作商业用途. 2)若本文档内有侵权文字或图片等内容,请联系作者bitpeach删除相应部分. 3)本文档内容涉及Python的多线程问题,没有介绍多线程的概念,没有介绍多线程的程序模块,只是讨论多线程产生的交织问题,并查找一些材料进行佐证和学习. 4)仅仅作为参考用途,抛砖引玉,不作为证据证明用途,请自行取舍,核实引用. 5)本文的超链接,请不要直接点击,为方便阅读,请选择“在新标签页打开”. 非常抱歉,我不是

python多线程(一)

原文:http://www.pythonclub.org/python-basic/threading 一.python多线程thread和threading实现 python是支持多线程的,并且是native的线程.主要是通过thread和threading这两个模块来实现的. python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用. 这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下

Python多线程和Python的锁

Python多线程 Python中实现多线程有两种方式,一种基于_thread模块(在Python2.x版本中为thread模块,没有下划线)的start_new_thread()函数,另一种基于threading模块的Thread类. 其实Python的多线程编程不能真正利用多核的CPU,但是用开源模块使你的计算压力分布到多核CPU上......... 一.使用start_new_thread()实现线程,是比较底层的实现方式,所有线程共享他们global数据,为了达到同步,模块也提供了简单的

python多线程爬虫设计及实现示例

爬虫的基本步骤分为:获取,解析,存储.假设这里获取和存储为io密集型(访问网络和数据存储),解析为cpu密集型.那么在设计多线程爬虫时主要有两种方案:第一种方案是一个线程完成三个步骤,然后运行多个线程:第二种方案是每个步骤运行一个多线程,比如N个线程进行获取,1个线程进行解析(多个线程之间切换会降低效率),N个线程进行存储. 下面我们尝试抓取http://www.chembridge.com/ 库存药品信息. 首先确定url为http://www.chembridge.com/search/se

python多线程与threading模块

python多线程与_thread模块 中介绍了线程的基本概念以及_thread模块的简单示例.然而,_thread模块过于简单,使得我们无法用它来准确地控制线程,本文介绍threading模块,它提供了更强大的多线程管理方案. threading模块的对象 Thread 表示一个执行线程的对象 Lock 锁原语 RLock 可重入锁对象,使单一线程可以再次获得已持有的锁(递归锁) Condition 条件变量对象,使得一个线程等待另一个线程满足特定条件 Event 条件变量的通用版本,任意数量

python多线程和多进程

Python多线程存取MySQL数据 为什么在Python里推荐使用多进程而不是多线程? 廖雪峰关于多进程 python进程池剖析(二) 示例说话 准备数据库,数据表 # 新建数据库 create database mxshop; # 新建测试表 create table table_iin (id int primary key auto_increment, `in` int, time datetime); # 授权用户 grant all on mxshop.* to [email pr

Python多线程实例

前言 感觉理解python多线程用“切换”和“共享”就差不多了.这里就贴上一个抢车票的小小实例,还有自己在编程过程中遇到的坑..... 实例:抢车票 抢车票有三类人:会员.弄了加速包.普通人. 说说区别: 钱带来的不公平:会员先跑,然后加速包,最后普通人 可以欣慰的公平:跑道一样长 守护线程SetDaemon 不设置守护进程 1 import threading 2 import time 3 #使用函数式 4 5 #会员 6 def vip(t1): 7 global num 8 time.s

python多线程

http://blog.csdn.net/pipisorry/article/details/45306973 CPU-bound(计算密集型) 和I/O bound(I/O密集型) I/O bound 指的是系统的CPU效能相对硬盘/内存的效能要好很多,此时,系统运作,大部分的状况是 CPU 在等 I/O (硬盘/内存) 的读/写,此时 CPU Loading 不高.CPU bound 指的是系统的 硬盘/内存 效能 相对 CPU 的效能 要好很多,此时,系统运作,大部分的状况是 CPU Lo