[BZOJ4542] [Hnoi2016] 大数 (莫队)

Description

  小 B 有一个很大的数 S,长度达到了 N 位;这个数可以看成是一个串,它可能有前导 0,例如00009312345
。小B还有一个素数P。现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也
是P 的倍数)。例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007;显然0077的子串007有6个子串都是素
数7的倍数。

Input

  第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的
子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 2
13。N,M<=100000,P为素数

Output

  输出M行,每行一个整数,第 i行是第 i个询问的答案。

Sample Input

11
121121
3
1 6
1 5
1 4

Sample Output

5
3
2
  //第一个询问问的是整个串,满足条件的子串分别有:121121,2112,11,121,121。

HINT

Source

Solution

  把n个后缀组成的数字全部对p取模。

  若s[l] ~ s[n]的余数和s[r] ~ s[n]的余数相同,那么s[l] ~ s[r - 1]区间内的数字就是p的倍数(l < r)

  这里有例外:当p = 2或p = 5时不成立。

  然后这个题就变成经典莫队题了:给定一个序列,每次询问[l, r]内有多少对相同的数

  每一个余数i给一个计数器ba[i](需离散化),记录[l, r]中这个数出现了几次,区间长度±1时答案改变值为ba[i]。

  然后。。。原数据里没有p = 2或p = 5的情况。。。所以就没有然后了。

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 ll sqn, lst[100005], cd[100005], ba[100005], ans[100005];
 5 struct query
 6 {
 7     ll id, l, r;
 8     bool operator < (const query &rhs) const
 9     {
10         if(l / sqn == rhs.l / sqn) return r < rhs.r;
11         return l / sqn < rhs.l / sqn;
12     }
13 }q[100005];
14 char s[100005];
15 map<ll, ll> Map;
16 int main()
17 {
18     ll n, m, p, l = 1, r = 0, cur = 0, bt = 1;
19     scanf("%lld%s%lld", &p, s + 1, &m);
20     n = strlen(s + 1), sqn = (ll)sqrt(n * 1.0);
21     for(ll i = n; i; i--)
22     {
23         bt = bt * 10 % p;
24         lst[i] = (lst[i + 1] + (s[i] - 48) * bt) % p;
25         cd[i] = lst[i];
26     }
27     sort(cd + 1, cd + n + 1);
28     for(ll i = 1; i <= n + 1; i++)
29         Map[cd[i]] = i;
30     for(ll i = 1; i <= n + 1; i++)
31         lst[i] = Map[lst[i]];
32     for(ll i = 1; i <= m; i++)
33     {
34         scanf("%lld%lld", &q[i].l, &q[i].r);
35         q[i].id = i, q[i].r++;
36     }
37     sort(q + 1, q + m + 1);
38     for(ll i = 1; i <= m; i++)
39     {
40         while(r < q[i].r) cur += ba[lst[++r]]++;
41         while(l > q[i].l) cur += ba[lst[--l]]++;
42         while(l < q[i].l) cur -= --ba[lst[l++]];
43         while(r > q[i].r) cur -= --ba[lst[r--]];
44         ans[q[i].id] = cur;
45     }
46     for(ll i = 1; i <= m; i++)
47         printf("%lld\n", ans[i]);
48     return 0;
49 }

时间: 2024-11-08 22:06:42

[BZOJ4542] [Hnoi2016] 大数 (莫队)的相关文章

【BZOJ4542】[Hnoi2016]大数 莫队

[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也是P 的倍数).例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007:显然0077的子串007有6个子串都是素数7的倍数. Input 第一行一个整数:P.第二行一个串:S

4542: [Hnoi2016]大数|莫队

HN一天考两个莫队是什么鬼..或者说莫队不是正确的姿势..? 考虑已经知道了l..r的答案新添入r+1如何更新当前答案 需要先预处理出后缀modp的值bi,假设子序列l..r模p的值为x 那么x?10r?l+b[r]=b[l] 然后就可以直接莫队统计了 模数为2或5的时候要特判一下 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cs

[BZOJ4542] [JZYZOJ2014][Hnoi2016] 大数(莫队+离散化)

正经题解在最下面 http://blog.csdn.net/qq_32739495/article/details/51286548 写的时候看了大神的题解[就是上面那个网址],看到下面这段话 观察题目,发现一串数s(l~r)整除p满足s(l~n-1)%p==s(r+1~n-1)%p 但p值为2或5不满足这个性质需要特判(不过数据中好像没有,于是笔者没写,有兴趣的可以自己去写写......) 然后问题转化为求一段区间中有几对相等的f值. 看到这里,我感觉豁然开朗,完全忽视了离散化的要求,我以为把

【莫队】bzoj4542: [Hnoi2016]大数

挺有意思的,可以仔细体味一下的题:看白了就是莫队板子. Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也是P 的倍数).例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007:显然0077的子串007有6个子串都是素数7的倍数. Input 第一行一个整数:P.第二行

BZOJ4542 [HNOI2016] 大数

[问题描述] 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345 .小B还有一个素数P.现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也 是P 的倍数).例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007:显然0077的子串007有6个子串都是素 数7的倍数. [输入格式] 第一行一个整数:P.第二行一个串:S.第三行一个整数:M.接下来M行,每行两个整数

4540: [Hnoi2016]序列|莫队+ST表

考虑现在已经知道了[l,r]的答案新添入一个r+1如何更新答案 也就是右端点在r+1处左端点在l..r+1之间的所有的子序列的答案 可以找出l..r中最小的数的位置p,然后p以及p左侧作为左端点的答案就可以直接计算了 考虑左端点在p+1....r+1时对答案的贡献,可以与处理一个前缀和Si表示以i为右端点的所有子序列的答案之和 那么左端点在p+1....r+1时对答案的贡献就是Sr+1?Sp 其他端点移动的做法也同理 为什么我的莫队跑了17s,而网上的其他莫队只需要5s,人傻自带三倍常数QWQ

bzoj4542: [Hnoi2016]大数(莫队)

这题...离散化...$N$和$n$搞错了...查了$2h$...QAQ 考虑$s[l...r]$,可以由两个后缀$suf[l]-suf[r+1]$得到$s[l...r]$代表的数乘$10^k$得到的结果,如果$p$不为$2$或$5$,即$gcd(p, 10^k)=1$,那么显然$s[l...r]$乘$10^k$模$p$为$0$的话,$s[l...r]$模p也为$0$,所以我们就可以变成询问$[l,r+1]$里有几个相同的后缀了. 如果$p$为$2$或$5$的话,我们还得判断这个数的个位是否是$

【bzoj5452】[Hnoi2016]大数(莫队)

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4542 首先若p=2,5则这题就是道傻逼题,前缀和搞一下没了.如果p为其他质数,那么可以这么处理: 我们先预处理出数组num[i]表示原串第i~n位表示的数模p的余数,那么第l~r位表示的数模p的余数为(num[l]-num[r+1])/10^(n-r),因为10^(n-r)与p互质,所以若num[l]=num[r+1],则第l~r位表示的数是p的倍数.于是莫队一下就好了. 代码: #

【BZOJ4540】【HNOI2016】序列(莫队)

[BZOJ4540][HNOI2016]序列(莫队) 题面 BZOJ 洛谷 Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列.现在有q个询问,每个询问给定两个数l和r,1≤l≤r ≤n,求a[l:r]的不同子序列的最小值之和.例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有 6个子序