分类和逻辑回归(Classification and logistic regression),广义线性模型(Generalized Linear Models) ,生成学习算法(Generative Learning algorithms)

分类和逻辑回归(Classification and logistic regression),广义线性模型(Generalized Linear Models) ,生成学习算法(Generative Learning algorithms)的相关文章

分类和逻辑回归(Classification and logistic regression)

分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例如,我们要做一个垃圾邮件分类器,则为邮件的特征,而对于y,当它1则为垃圾邮件,取0表示邮件为正常邮件.所以0称之为负类(negative class),1为正类(positive class) 逻辑回归 首先看一个肿瘤是否为恶性肿瘤的分类问题,可能我们一开始想到的是用线性回归的方法来求解,如下图:

机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)

形式: 采用sigmoid函数: g(z)=11+e?z 其导数为g′(z)=(1?g(z))g(z) 假设: 即: 若有m个样本,则似然函数形式是: 对数形式: 采用梯度上升法求其最大值 求导: 更新规则为: 可以发现,则个规则形式上和LMS更新规则是一样的,然而,他们的分界函数hθ(x)却完全不相同了(逻辑回归中h(x)是非线性函数).关于这部分内容在GLM部分解释. 注意:若h(x)不是sigmoid函数而是阈值函数: 这个算法称为感知学习算法.虽然得到更新准则虽然相似,但与逻辑回归完全不

逻辑回归模型(Logistic Regression)及Python实现

逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑

为什么逻辑斯特回归(logistic regression)是线性模型

一个典型的logistic regression模型是: 这里明明用了非线性函数,那为什么logistic regression还是线性模型呢? 首先,这个函数不是f(y,x)=0的函数,判断一个模型是否是线性,是通过分界面是否是线性来判断的. 这个P函数是y关于x的后验概率,它的非线性性不影响分界面的线性性.可以通过令两种类别的概率相等,求解x的表达式,如果是线性的,那么就是线性模型. 打破线性也很简单,只要变量之间相乘一下,或者使用非线性函数. 容易得出,softmax regression

机器学习(一)——线性回归、分类与逻辑回归

http://antkillerfarm.github.io/ 序 这是根据Andrew Ng的<机器学习讲义>,编写的系列blog. http://www.cnblogs.com/jerrylead/archive/2012/05/08/2489725.html 这是网友jerrylead翻译整理的版本,也是本文的一个重要的参考. http://www.tcse.cn/~xulijie/ 这是jerrylead的个人主页. 我写的版本在jerrylead版本的基础上,略有增删,添加了一下其他

第二章 分类和逻辑回归

分类和逻辑回归 接下来讨论分类问题,类似于回归问题,只不过y的值只有少数离散的值.现在我们考虑二分类问题,此时y只有0和1两个值. 逻辑回归 构造假设函数$h_{\theta}(x)$: $h_{\theta}(x)=g(\theta^{(x)})=\frac{1}{1+e^{-\theta^{T}x}}$ 其中 $g(z)=\frac{1}{1+e^{-z}}$ $g^{'}(z)=g(z)(1-g(z))$ $g(z)$函数图像如下: $g^{'}(z)$函数图像如下: 假设: $P(y=1

Machine Learning—Classification and logistic regression

印象笔记同步分享:Machine Learning-Classification and logistic regression

【机器学习算法应用和学习_2_理论篇】2.2 M_分类_逻辑回归

一.原理阐述 算法类型:监督学习_分类算法 输入:数值型或标称型(标称型需要独热编码) V1.0 用回归方式解决二分类问题,通过引入一个Sigmoid函数将中间y值映射到实际二分类的y值上. 二.算法选择 三.算法过程 1.Sigmoid函数是一个x值域是(-∞,+∞),y值域是(0,1)的单调递增函数: 2.预测y值>0.5为1类,<0.5为0类,y值也可以解释为为1和0类的概率: 3.同样使用“最小二乘”概念,求得最佳方程,得到目标函数: 4.要使得目标函数达到最小,需要采用一种称为“梯度

机器学习的分类方法——逻辑回归

这个算法看得一知半解的,无论如何,先把理解的写下来,往后再迭代.还是以问题为导向: 这个分类模型如何构建? 这个模型的分类原理? 如何求解模型的参数? 逻辑回归模型有什么优点? 第一个问题,对于简单的线性模型,z=w·x+b,可以用它回归,然后利用最小二乘法求解参数w和b.当这个线性模型和sigmoid函数复合时,就构成了逻辑回归模型.对于sigmoid函数,如下图:其将z(图中的x替换为z) 第二个问题,根据对"事件几率"的定义:给事件发生与不发生的概率比,