基础算法-查找:折半查找

折半查找

又称为二分查找。这种查找方法要求查找表的数据是线性结构保存,并且还要求查找表中的数据是按关键字由小到大有序排列。

折半查找(二分查找)是一种简单而又高效的查找算法,其查找长度至多为㏒2n+1(判定树的深度),平均查找长度为㏒2(n+1)-1,效率比顺序查找要高,但折半查找只能适用于顺序存储有序表(如对线性链表就无法有效地进行折半查找)。

经典非递归算法实现

int Binary_Search(int search_table[], int key, int low ,int high)
{
	while(low <= high)
	{
		mid  = (low + high) / 2;
		if(search_table[mid] < key)
		{
			low = mid + 1;
		}
		else if(search_table[mid] > key)
		{
			high = mid - 1;
		}
		else
		{
			return mid;
		}
	}//while

	return -1;
}

经典递归算法实现

int Binary_Search(int search_table[], int key, int low ,int high)
{
	if(low > high)
	{
		return -1;
	}
	int mid = (low + high) / 2;

	if(search_table[mid] == key)
	{
		return mid;
	}
	else if(search_table[mid] < key)
	{
		Binary_Search(search_table, key, mid + 1, high);
	}
	else
	{
		Binary_Search(search_table, key, low, mid - 1);
	}
}

  不过,由于折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,这样的算法已经比较好了。但是对于频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用了。

时间: 2024-10-09 08:01:51

基础算法-查找:折半查找的相关文章

二分查找/折半查找算法

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表.重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功. class Pr

(java)有序表查找——折半查找,插值查找,斐波那契查找

有序表查找 /* 主函数 */ public class OrderTableSearch { public static void main(String[] args) { int [] a= {0,1,16,24,35,47,59,62,73,88,99}; System.out.println(FibonacciSearch(a, 10, 88)); System.out.println(InsertKeySearch(a, 10, 88)); System.out.println(Bi

顺序查找,折半查找,二叉排序树的建立,哈希表的建立

以下四个验证性实验都做. (1)顺序查找验证 (2)折半查找验证 (3)二叉排序树的建立 (4)哈希表的建立 #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<string.h> #include<algorithm> using namespace std; class dijiuzhang { public: int a[1

java 二分查找 - 折半查找算法

二分查找: 这个算法是比较简单的,容易理解的.这个算法是对有序的数组进行查找,所以想要使用这个算法那么 首先先要对数组进行排序. 其实有三个指针,开始指针,末尾指针,中间指针,来开始.折半查找. 步骤如下: 1.确定三个指针,start,end,middleIndex. 2.判断start<=end,如果满足,就执行这个方法,不满足,就返回,找不到. 3.在2的前提下,我们对其折半查找,middleIndex = start+end >> 1,取中间值. 4.判断中间位置的值和目标值是否

基础算法介绍 —— 二分查找算法

不知不觉在目前的公司待满3年了,打算回家找份工作.面试中被问到关于算法的题目:有哪些常见的查找算法?下来就把我所掌握的查找算法分享给大家,本文主要介绍二分查找算法. 算法定义(摘自百度):二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果

Java 实现二分查找\折半查找

二分查找又称折半查找,优点是比较次数少,查找速度快:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表. 该算法要求: 1.  必须采用顺序存储结构. 2.  必须按关键字大小有序排列. 该算法时间复杂度最坏为:O(logn) 注意点有mid.low.high 其Java实现代码如下(该代码有缺陷,只是基本实现,有待完善): public class BinarySearch { /** * @param args */ public static

二分查找/折半查找

二分查找又叫折半查找. 前提:数组是有序的. 思想:1.每次都拿中间的数的key进行比较,如果相等,找到: 2.如果key > 中间数,说明key在中间数的右边,接着拿右边的中间数和key比较: 3.如果key < 中间数,说明key在中间数的左边,接着拿左边的中间数和key比较: 4.循环上述过程: 啥也不说了,上代码: 1 #include <stdio.h> 2 3 int main(int argc, const char * argv[]) { 4 5 // 定义数组 6

二分法查找(折半查找)

顺序查找并没有对表中的关键字域的顺序做出任何假设,与顺序查找不同,在折半查找中,表中的记录是按关键字域有序排列的,其比较会出现下面三种结果: searchumn< list[middle].key,此时,无需考虑位于list[middle]和list[n-1]之间的记录,而继续查找位于list[0]和list[middle-1]间的记录. searchnum=list[middle].key,此时,查找成功,结束查找. searchnum>list[middle].key,此时,无需考虑位于l

算法:折半查找法

输入代码: /* * Copyright (c) 2014, 烟台大学计算机学院 * All rights reserved. * 文件名称:sum123.cpp * 作 者:林海云 * 完成日期:2015年1月12日 * 版 本 号:v2.0 * * 问题描述:给定一个排序好的数组,使他可以具备查找功能 * 输入描述:要查找的数 * 程序输出:查找数的位置 */ #include<iostream> using namespace std; const int n=10; int main(

基础算法之二分查找

二分查找 利用分治法,逐渐苏小查找范围,适用于有序数组. 时间复杂度是O(log2N). PS:二分查找算法的判定过程实际上可以借助一棵平衡二叉树来描述,中间位置的关键字可以看成二叉树的根节点. C++代码如下: 1 #include <iostream> 2 using namespace std; 3 template<class DataType> int binSearch(DataType key[],int n,DataType k) 4 { 5 int low=0,h