hdu2767之强联通缩点

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2768    Accepted Submission(s): 1038

Problem Description

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.

2. Ax = b has exactly one solution for every n × 1 matrix b.

3. Ax = b is consistent for every n × 1 matrix b.

4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.

* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

Output

Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

Sample Input

2
4 0
3 2
1 2
1 3

Sample Output

4
2
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std;

const int MAX=20000+10;
int n,m,size,top,index,ind,oud;
int head[MAX],dfn[MAX],low[MAX],stack[MAX];
int mark[MAX],flag[MAX];
//dfn表示点u出现的时间,low表示点u能到达所属环中最早出现的点(记录的是到达的时间) 

struct Edge{
	int v,next;
	Edge(){}
	Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[50000+10];

void Init(int num){
	for(int i=0;i<=num;++i)head[i]=-1;
	size=top=index=ind=oud=0;
}

void InsertEdge(int u,int v){
	edge[size]=Edge(v,head[u]);
	head[u]=size++;
}

void tarjan(int u){
	if(mark[u])return;
	dfn[u]=low[u]=++index;
	stack[++top]=u;
	mark[u]=1;
	for(int i=head[u];i != -1;i=edge[i].next){
		int v=edge[i].v;
		tarjan(v);
		if(mark[v] == 1)low[u]=min(low[u],low[v]);//必须点v在栈里面才行
	}
	if(dfn[u] == low[u]){
		++ind,++oud;//计算缩点后点的个数,方便计算入度和出度
		while(stack[top] != u){
			mark[stack[top]]=-1;
			low[stack[top--]]=low[u];
		}
		mark[u]=-1;
		--top;
	}
}

int main(){
	int t,u,v;
	scanf("%d",&t);
	while(t--){
		scanf("%d%d",&n,&m);
		Init(n);
		for(int i=0;i<m;++i){
			scanf("%d%d",&u,&v);
			InsertEdge(u,v);
		}
		memset(mark,0,sizeof mark);
		for(int i=1;i<=n;++i){
			if(mark[i])continue;
			tarjan(i);//tarjan用来缩点
		}
		if(ind == 1){cout<<0<<endl;continue;}
		for(int i=0;i<=n;++i)mark[i]=flag[i]=0;
		for(int i=1;i<=n;++i){
			for(int j=head[i];j != -1;j=edge[j].next){
				v=edge[j].v;
				if(low[i] == low[v])continue;
				if(mark[low[i]] == 0)--oud;//mark标记点u是否有出度
				if(flag[low[v]] == 0)--ind;//flag标记点u是否有入度
				mark[low[i]]=1,flag[low[v]]=1;
			}
		}
		printf("%d\n",max(oud,ind));
	}
	return 0;
}

hdu2767之强联通缩点

时间: 2024-11-11 08:30:31

hdu2767之强联通缩点的相关文章

hdu3836之强联通缩点

Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1430    Accepted Submission(s): 645 Problem Description To see a World in a Grain of Sand And a Heaven in a Wild Flower, Hold Inf

POJ 1236 Network of School(强联通缩点)

Description A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the "receiving schools"). Note that if B is in the

ZOJ 3795 Grouping 强联通缩点+拓扑序+偏序集的最大链的大小

题意:有n个人,m个关系,关系是这两个人前一个人可以跟后一个比较. 那么问你我最少分多少组可以使这个组里的人都不可以比较. 只会强联通缩点,真特么不知道怎么做,想了一个小时,网上一看,还要会偏序集的东西,有一个叫Dilworth定理的东西. 定理1 令(X,≤)是一个有限偏序集,并令r是其最大链的大小.则X可以被划分成r个但不能再少的反链. 其对偶定理称为Dilworth定理: 定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小.则X可以被划分成m个但不能再少的链. 然后我们用到的是

Proving Equivalences (hdu 2767 强联通缩点)

Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3743    Accepted Submission(s): 1374 Problem Description Consider the following exercise, found in a generic linear algebra

[bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)

题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点:原图的最大半联通子图实际是上是新DAG图的一个最长链 然后就像拓扑排序一样(不过这是以出度为0的点优先,拓扑排序以入度为0的点优先),设f[i]表示以节点i为起始节点的最长链的长度,s[i]表示以节点i为起始节点的最长链的条数,然后就DP一样搞…… 注意: 1.缩点的时候有可能有重边,要注意判断 2

HDU 2767-Proving Equivalences(强联通+缩点)

题目地址:HDU 2767 题意:给一张有向图,求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量,如果为1,则输出0(证明该图不需要加边已经是强连通的了),否则缩点.遍历原图的所有边,如果2个点在不同的强连通分量里面,建边,构成一张新图.统计新图中点的入度和出度,取入度等于0和出度等于0的最大值(因为求强连通缩点后,整张图就变成了一个无回路的有向图,要使之强连通,只需要将入度=0和出度=0的点加边即可,要保证加边后没有入度和出度为0的点,所以取两者最大值) *#include <st

Intelligence System (hdu 3072 强联通缩点+贪心)

Intelligence System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1650    Accepted Submission(s): 722 Problem Description After a day, ALPCs finally complete their ultimate intelligence syste

Summer Holiday (hdu 1827 强联通缩点)

Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2054    Accepted Submission(s): 941 Problem Description To see a World in a Grain of Sand And a Heaven in a Wild Flower, Hold Inf

hdoj 2242 考研路茫茫——空调教室 【无向图求边双联通 缩点 + 树形dp】

考研路茫茫--空调教室 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2447    Accepted Submission(s): 721 Problem Description 众所周知,HDU的考研教室是没有空调的,于是就苦了不少不去图书馆的考研仔们.Lele也是其中一个.而某教室旁边又摆着两个未装上的空调,更是引起人们无限YY