GB和GBDT 算法流程及分析

1、优化模型的两种策略:

1)基于残差的方法

  残差其实就是真实值和预测值之间的差值,在学习的过程中,首先学习一颗回归树,然后将“真实值-预测值”得到残差,再把残差作为一个学习目标,学习下一棵回归树,依次类推,直到残差小于某个接近0的阀值或回归树数目达到某一阀值。其核心思想是每轮通过拟合残差来降低损失函数。

  总的来说,第一棵树是正常的,之后所有的树的决策全是由残差来决定。

2)使用梯度下降算法减小损失函数。

  对于一般损失函数,为了使其取得最小值,通过梯度下降算法,每次朝着损失函数的负梯度方向逐步移动,最终使得损失函数极小的方法(此方法要求损失函数可导)。

2、GB(Gradient Boosting)梯度提升算法

  GB其实是一个算法框架,即可以将已有的分类或回归算法放入其中,得到一个性能很强大的算法。

  GB总共需要进行M次迭代,每次迭代产生一个模型,我们需要让每次迭代生成的模型对训练集的损失函数最小,而如何让损失函数越来越小呢?我们采用梯度下降的方法,在每次迭代时通过向损失函数的负梯度方向移动来使得损失函数越来越小,这样我们就可以得到越来越精确的模型。

梯度提升算法(GB)过程如下:[1]

1)初始化损失函数。

  

2)对于第m轮迭代,当m<=M时循环执行A)~D)      (m=1,2,…,M)

  A)计算残差rmi

  

  计算损失函数的负梯度在当前模型的值,将它作为残差的估计,对于平方损失函数它就是残差,对于一般损失函数,它就是残差的近似值。

  B)对rmi拟合一颗回归树,得到第m课树的叶节点区域Rmj。(j=1,2,…,J)

    (估计回归树叶节点区域,拟合残差近似值)

  C)对j=1,2,…,J,线性搜索出损失函数的最小值

  

  D)更新f(x)

  

3)得到回归树

  

下面给出Friedman大牛论文中的GB算法[6],论文下载链接:http://pan.baidu.com/s/1pJxc1ZH

图2.1 Gradient Boost算法[6]

3、GBDT (Gradient Boosting Decision Tree):梯度提升决策树算法

  此处主要讨论多类Logistic回归问题

图3.1 多类logistic回归算法[6]

关于以上代码,网友已有分析:[5] (在此借用)

“1. 表示建立M棵决策树(迭代M次)

2. 表示对函数估计值F(x)进行Logistic变换

3. 表示对于K个分类进行下面的操作(其实这个for循环也可以理解为向量的操作,每一个样本点xi都对应了K种可能的分类yi,所以yi, F(xi), p(xi)都是一个K维的向量,这样或许容易理解一点)

4. 表示求得残差减少的梯度方向

5. 表示根据每一个样本点x,与其残差减少的梯度方向,得到一棵由J个叶子节点组成的决策树

6. 为当决策树建立完成后,通过这个公式,可以得到每一个叶子节点的增益(这个增益在预测的时候用的)

  每个增益的组成其实也是一个K维的向量,表示如果在决策树预测的过程中,如果某一个样本点掉入了这个叶子节点,则其对应的K个分类的值是多少。

7. 的意思为,将当前得到的决策树与之前的那些决策树合并起来,作为新的一个模型

最后本人对GBDT研究得还不够透彻,下次研究清楚了再专门写一篇GBDT的文章!!

参考文献:

[1] 李航,统计学习方法。

[2] 林轩田,机器学习技法。

[3] 程序员之家,http://www.programerhome.com/?p=3665

[4] DianaCody, http://www.dianacody.com/2014/11/01/GBRT.html

[5] leftnoteasy, http://www.cnblogs.com/leftnoteasy/archive/2011/03/07/random-forest-and-gbdt.html

[6] Friedman J H. Greedy Function Approximation: A Gradient Boosting Machine[C]// Annals of Statistics1999:1189--1232.

时间: 2024-11-08 21:36:22

GB和GBDT 算法流程及分析的相关文章

一步一步理解GB、GBDT、xgboost

GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们之间有非常紧密的联系,GBDT是以决策树(CART)为基学习器的GB算法,xgboost扩展和改进了GDBT,xgboost算法更快,准确率也相对高一些. 1. Gradient boosting(GB) 机器学习中的学习算法的目标是为了优化或者说最小化loss Function, Gradient

GBDT算法简述

提升决策树GBDT 梯度提升决策树算法是近年来被提及较多的一个算法,这主要得益于其算法的性能,以及该算法在各类数据挖掘以及机器学习比赛中的卓越表现,有很多人对GBDT算法进行了开源代码的开发,比较火的是陈天奇的XGBoost和微软的LightGBM 一.监督学习 1.  监督学习的主要任务 监督学习是机器学习算法中重要的一种,对于监督学习,假设有m个训练样本: 其中, ,如分类问题:也可以为连续值,如回归问题.在监督学习中利用训练样本训练出模型,该模型能够细线从样本特征 . 为了能够对映射F进行

使用Apriori算法和FP-growth算法进行关联分析(Python版)

===================================================================== <机器学习实战>系列博客是博主阅读<机器学习实战>这本书的笔记也包含一些其他python实现的机器学习算法 算法实现均采用python github 源码同步:https://github.com/Thinkgamer/Machine-Learning-With-Python ==================================

Weka算法Clusterers-DBSCAN源代码分析

假设说世界上仅仅能存在一种基于密度的聚类算法的话.那么它必须是DBSCAN(Density-based spatial clustering of applications with noise).DBSCAN作为基于密度聚类算法的典型,相对于Kmeans,最大长处是能够自己决定聚类数量.同一时候能够过滤一些噪点.但相对的.对传入的參数较为敏感,而且參数调优全靠经验. 一.算法 对于算法部分仅仅做一些"感性"的分析.详细算法的理论证明以及更精确的形式化描写叙述參考Wiki:http:/

AdaBoost 人脸检测介绍(3) : AdaBoost算法流程

本系列文章总共有七篇,目录索引如下: AdaBoost 人脸检测介绍(1) : AdaBoost身世之谜 AdaBoost 人脸检测介绍(2) : 矩形特征和积分图 AdaBoost 人脸检测介绍(3) : AdaBoost算法流程 AdaBoost 人脸检测介绍(4) : AdaBoost算法举例 AdaBoost 人脸检测介绍(5) : AdaBoost算法的误差界限 AdaBoost 人脸检测介绍(6) : 使用OpenCV自带的 AdaBoost程序训练并检测目标 AdaBoost 人脸

GBDT 算法:原理篇

本文由云+社区发表 GBDT 是常用的机器学习算法之一,因其出色的特征自动组合能力和高效的运算大受欢迎. 这里简单介绍一下 GBDT 算法的原理,后续再写一个实战篇. 1.决策树的分类 决策树分为两大类,分类树和回归树. 分类树用于分类标签值,如晴天/阴天/雾/雨.用户性别.网页是否是垃圾页面: 回归树用于预测实数值,如明天的温度.用户的年龄.网页的相关程度: 两者的区别: 分类树的结果不能进行加减运算,晴天 晴天没有实际意义: 回归树的结果是预测一个数值,可以进行加减运算,例如 20 岁 3

算法设计和分析(Prim算法构建最小生成树)

问题: 给定无向图G(N,M)表明图G有N个顶点,M条边,通过Prim算法构造一个最小生成树 分析: 算法流程: 构造好的最小生成树就是step6 运行代码: #include<cstdio> #include<string.h> #include<algorithm> #include<cmath> #include<iostream> #include<vector> #include<queue> #include&

(转)常用的算法设计与分析-一夜星辰的博客

算法设计与分析 分治法 思想 1. 将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同.递归地解这些子问题,然后将各子问题的解合并得到原问题的解. 2. divide-and-conquer(P) { if(|P| <= n0)adhoc(P); divide P into samller subinstances P1,P2...,Pk; for(int i = 1;i < k;i++) { yi = divide-and-conquer(Pi); } retu

如何编写自定义标签?具体流程与分析(自定义标签快速入门)

1.自定义标签简介 自定义标签主要用于移除Jsp页面中的java代码 使用自定义标签移除jsp页面中的java代码,只需要完成以下两个步骤: 1.编写一个实现Tag接口的Java类(标签处理器类) 2.在WEB-INF中编写标签库描述符(tld)文件,在tld文件中对标签处理器类描述成一个标签 (参考tomcat中的examples 项目中jsp部分) 2.自定义标签的执行流程的分析 JSP引擎将遇到自定义标签时,首先创建标签处理器类的实例对象,然后按照JSP规范定义的通信规则依次调用它的方法.