三国游戏——博弈论——洛谷1199

小涵一定是赢的,为什么呢,不说了,反正我们只需要找出每个武将与其他武将配对中第二大的,然后求出这些第二大的最大值。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
inline int read(){
    int t=1,num=0;char c=getchar();
    while(c>‘9‘||c<‘0‘){if(c==‘-‘)t=-1;c=getchar();}
    while(c>=‘0‘&&c<=‘9‘){num=num*10+c-‘0‘;c=getchar();}
    return num*t;
}
int a[501][501],n,f,s,ans=0;
int main()
{
    n=read();
    for(int i=1;i<n;i++)
        for(int j=i+1;j<=n;j++)
            a[i][j]=a[j][i]=read();
    for(int i=1;i<=n;i++){
        f=0;s=0;
        for(int j=1;j<=n;j++){
            if(i==j)continue;
            if(a[i][j]>f){
                s=f;f=a[i][j];
            }
            else if(a[i][j]>s)s=a[i][j];
        }
        ans=max(ans,s);
    }
    printf("1\n%d\n",ans);
    return 0;
}

本文由Yzyet编写,网址为www.cnblogs.com/Yzyet。非Yzyet同意,禁止转载,侵权者必究。

时间: 2024-10-05 23:27:00

三国游戏——博弈论——洛谷1199的相关文章

洛谷P1199 三国游戏 博弈论 数学

洛谷P1199 三国游戏博弈论 数学 这道题 其实 人是必胜的 能取到的最大值 为 每行第二大值中的最大值 为什么呢 假使第一次我们取到了我们心中的那个答案的所在行 那么接着电脑会取 这一行最大值的对应行 那么我们来分析一下电脑取的那个数在他取的那行的特点 首先我们假设其不是最大值,因为矩阵中任意两个数不相同 所以也就是说还有个数比他大,然后就是说电脑取的第二大或者第n大值就已经比我们取的第一大值要大了,说明我们取的行并不是每行第二大值中的最大值所在的行2.也就是说这个数必定为该行中的最大值 那

洛谷 1199三国游戏

题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战.游戏中共有 N 位武将(N为偶数且不小于 4),任意两个武将之间有一个"默契值",表示若此两位武将作为一对组合作战时,该组合的威力有多大.游戏开始前,所有武将都是自由的(称为自由武将,一旦某个自由武将被选中作为某方军队的一员,那么他就不再是自由武将了),换句话说,所谓的自由武将不属于任何一方. 游戏开始,小涵和计算机要从自由武将中挑选武将组成自己的军

NOIP2010pj三国游戏[博弈论]

题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战.游戏中共有 N 位武将(N为偶数且不小于 4),任意两个武将之间有一个“默契值”,表示若此两位武将作为一对组合作战时,该组合的威力有多大.游戏开始前,所有武将都是自由的(称为自由武将,一旦某个自由武将被选中作为某方军队的一员,那么他就不再是自由武将了),换句话说,所谓的自由武将不属于任何一方. 游戏开始,小涵和计算机要从自由武将中挑选武将组成自己的军队,规则如下:小涵先

道路游戏(洛谷 P1070)

题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将这 n 个机器人工厂编号为1~n,因为马路是环形的,所以第 n 个机器人工厂和第 1 个机器人工厂是由一段马路连接在一起的.小新将连接机器人工厂的这 n 段马路也编号为 1~n,并规定第 i 段马路连接第 i 个机器人工厂和第 i+1 个机器人工厂(1≤i≤n-1),第 n 段马路连接第 n 个机器人工厂和第 1个机器人

色板游戏(洛谷 1558)

题目背景 阿宝上学了,今天老师拿来了一块很长的涂色板. 题目描述 色板长度为L,L是一个正整数,所以我们可以均匀地将它划分成L块1厘米长的小方格.并从左到右标记为1, 2, ... L.现在色板上只有一个颜色,老师告诉阿宝在色板上只能做两件事:1. "C A B C" 指在A到 B 号方格中涂上颜色 C.2. "P A B" 指老师的提问:A到 B号方格中有几种颜色.学校的颜料盒中一共有 T 种颜料.为简便起见,我们把他们标记为 1, 2, ... T. 开始时色板

洛谷P1290 欧几里德的游戏 数学 博弈论 模拟

洛谷P1290 欧几里德的游戏 数学 博弈论 模拟 这道题我们因为当 x 大于 y 时 你也只能在合法范围 内取 1 个 y 两个 y 也就是说 能取的y大于等于2时,则你本质不同的取法共有两种,此时你必定获胜,因为本质不同,而在最优策略下,则说明胜利者也不同,也就是说这时候你可以决定自己的输赢 ,我们称这种必胜局为 v 局 2.但是如果 v 局后面还有v 局怎么办,这个不必担心,因为先拿到 v局的人,有两种本质不同的取法,也就是说 他可以控制自己下次必定拿到 v 局,这样就 能确保胜利了 所以

洛谷1288 取数游戏II 博弈论

洛谷1288 取数游戏II 博弈论 最优策略 一定是你一步把值走完,然后我再走完,这样不给别人留后路 然后这样走 只要自己从左走 或者从右走其中有一个有奇数步可走,则说明是必胜局 如果都是只能走偶数步的,就是必败局 . 另一个题解 首先,对于一条链a1,a2,a3,a4......0 如果是偶数条边,那么现手一定赢,因为他每一次都只用把后面一条取完,例如 5 4 3 6 5 0 先手取完5,后手没法回到前一个位置,而无论接下来后手去多少,先手继续取完3,再然后取完5,后手没办法再去,先手赢.就这

洛谷P1080 国王游戏 高精度 贪心 数学推公式

洛谷P1080 国王游戏        数学推公式      高精度    贪心 然而这并不是我打出来的,抄题解... 将左手与右手的乘积从小到大排序,然后计算求最大值即可.(需要高精度) 证明: 1)知道,如果相邻的两个人交换位置,只会影响到这两个人的值,不会影响他人 2)假设相邻的两个人i, i + 1.设A[i] B[i] <= A[i + 1] B[i + 1],i之前所有人的左手乘积为S. 则,ans1 = max{S / B[i], S * A[i] / B[i + 1]} 若交换

洛谷 P1005 矩阵取数游戏

题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2.每次取走的各个元素只能是该元素所在行的行首或行尾: 3.每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值*2^i,其中i表示第i次取数(从1开始编号): 4.游戏结束总得分为m次取数得分之和. 帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分. 输入输