题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
思路:
方法一:动态规划, 数组为vec[],设dp[i] 是以vec[i]结尾的子数组的最大和,对于元素vec[i+1], 它有两种选择:a、vec[i+1]接着前面的子数组构成最大和,b、vec[i+1]自己单独构成子数组。则dp[i+1] = max{dp[i]+vec[i+1], vec[i+1]}
附加:记录左右节点位置
/** * @param {number[]} nums * @return {number} */ var maxSubArray = function(nums) { var sum=0,maxsum=-2147483648,begin=0; for(var i=0,len=nums.length;i<len;i++){ if(sum>=0){ sum=sum+nums[i]; }else{ sum=nums[i]; begin=i; } if(maxsum<sum){ maxsum=sum; left=begin; right=i; } } return maxsum; };
方法二:
最简单的就是穷举所有的子数组,然后求和,复杂度是O(n^3)
int maxSum1(vector<int>&vec, int &left, int &right) { int maxsum = INT_MIN, sum = 0; for(int i = 0; i < vec.size(); i++) for(int k = i; k < vec.size(); k++) { sum = 0; for(int j = i; j <= k; j++) sum += vec[j]; if(sum > maxsum) { maxsum = sum; left = i; right = k; } } return maxsum; }
算法三:
上面代码第三重循环做了很多的重复工作,稍稍改进如下,复杂度为O(n^2)
int maxSum2(vector<int>&vec, int &left, int &right) { int maxsum = INT_MIN, sum = 0; for(int i = 0; i < vec.size(); i++) { sum = 0; for(int k = i; k < vec.size(); k++) { sum += vec[k]; if(sum > maxsum) { maxsum = sum; left = i; right = k; } } } return maxsum; }
算法四:
分治法, 下面贴上编程之美的解释, 复杂度为O(nlogn)
//求数组vec【start,end】的最大子数组和,最大子数组边界为[left,right] int maxSum3(vector<int>&vec, const int start, const int end, int &left, int &right) { if(start == end) { left = start; right = left; return vec[start]; } int middle = start + ((end - start)>>1); int lleft, lright, rleft, rright; int maxLeft = maxSum3(vec, start, middle, lleft, lright);//左半部分最大和 int maxRight = maxSum3(vec, middle+1, end, rleft, rright);//右半部分最大和 int maxLeftBoeder = vec[middle], maxRightBorder = vec[middle+1], mleft = middle, mright = middle+1; int tmp = vec[middle]; for(int i = middle-1; i >= start; i--) { tmp += vec[i]; if(tmp > maxLeftBoeder) { maxLeftBoeder = tmp; mleft = i; } } tmp = vec[middle+1]; for(int i = middle+2; i <= end; i++) { tmp += vec[i]; if(tmp > maxRightBorder) { maxRightBorder = tmp; mright = i; } } int res = max(max(maxLeft, maxRight), maxLeftBoeder+maxRightBorder); if(res == maxLeft) { left = lleft; right = lright; } else if(res == maxLeftBoeder+maxRightBorder) { left = mleft; right = mright; } else { left = rleft; right = rright; } return res; }
时间: 2024-10-12 04:23:41