【POJ 1984】Navigation Nightmare(带权并查集)

Navigation Nightmare

Description

Farmer John‘s pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):

           F1 --- (13) ---- F6 --- (9) ----- F3
            |                                 |
           (3)                                |
            |                                (7)
           F4 --- (20) -------- F2            |
            |                                 |
           (2)                               F5
            |
           F7 

Being an ASCII diagram, it is not precisely to scale, of course.

Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path 
(sequence of roads) links every pair of farms.

FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

There is a road of length 10 running north from Farm #23 to Farm #17 
There is a road of length 7 running east from Farm #1 to Farm #17 
...

As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

What is the Manhattan distance between farms #1 and #23?

FJ answers Bob, when he can (sometimes he doesn‘t yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms. 
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..M+1: Each line contains four space-separated entities, F1,
        F2, L, and D that describe a road. F1 and F2 are numbers of
        two farms connected by a road, L is its length, and D is a
        character that is either ‘N‘, ‘E‘, ‘S‘, or ‘W‘ giving the
        direction of the road from F1 to F2.

* Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB‘s
        queries

* Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob
        and contains three space-separated integers: F1, F2, and I. F1
        and F2 are numbers of the two farms in the query and I is the
        index (1 <= I <= M) in the data after which Bob asks the
        query. Data index 1 is on line 2 of the input data, and so on.

Output

* Lines 1..K: One integer per line, the response to each of Bob‘s
        queries.  Each line should contain either a distance
        measurement or -1, if it is impossible to determine the
        appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6

Sample Output

13
-1
10

Hint

At time 1, FJ knows the distance between 1 and 6 is 13. 
At time 3, the distance between 1 and 4 is still unknown. 
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10.

Source

USACO 2004 February

【题意】

  约翰所在的乡村可以看做一个二维平面,其中有 N 座牧场,每座牧场都有自己的坐标,编号为 1
N。牧场间存在一些道路,每条道路道路连接两个不同的牧场,方向必定平行于 X 轴或 Y 轴。乡
下地方的道路不会太多,连通两座牧场之间的路径是唯一的。
突然间,约翰的导航仪失灵了,牧场的坐标记录全部消失了。所幸的是,约翰找到了表示道路的
数据,可以通过这些信息得知牧场间的相对位置。但贝西有急事,在约翰工作到一半的时候就要知道
一些牧场间的曼哈顿距离。这时,如果约翰能从找回的道路信息之间推算出答案,就会告诉贝西。请
你帮助约翰来回答贝西的问题吧。 ( x 1 , y 1) 和 ( x 2 , y 2) 间的曼哈顿距离定义为 | x 1 ? x 2| + | y1 ? y2|

【分析】

  妈妈啊这题打的一大半都是搞这个输入,在线就在线,要不要这么恶心!!!醉~~

  啊,带权并查集,就是还原并查集为一棵树,然后在改变fa的时候改一下就好了。

  这棵并查集树当然是层数越少越好咯。权值我记录的是它的横坐标与纵坐标跟父亲的差值,更改父亲的时候(就是抛弃原来的父亲的时候)把父亲的权值加到自己身上再修改。

  然后合并两棵树,就先把一个点弄成那个并查集树的跟,其实做一遍find就已经把它放在根的儿子了,再交换一下根就好了,然后就把整颗树插进去就好了。

  嗯,自己YY一下都可以Y出来的啦。。

  代码长度绝对是因为输入太!!恶心!!

代码如下:

 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<cstring>
 4 #include<iostream>
 5 #include<algorithm>
 6 #include<queue>
 7 #include<cmath>
 8 using namespace std;
 9 #define Maxn 40010
10
11 int fa[Maxn],nx[Maxn],ny[Maxn];
12
13 int myabs(int x) {return x>0?x:-x;}
14
15 int ffind(int x)
16 {
17     int y=fa[x];
18     if(x!=fa[x]) fa[x]=ffind(fa[x]);
19     nx[x]+=nx[y];ny[x]+=ny[y];
20     return fa[x];
21 }
22
23 char s[10];
24
25 struct node
26 {
27     int x,y,c,p;
28     int ans;
29 }t[40010],tt[50010];
30
31 bool cmp(node x,node y) {return x.c<y.c;}
32 bool cmp2(node x,node y) {return x.p<y.p;}
33
34 int main()
35 {
36     int n,m;
37     scanf("%d%d",&n,&m);
38     for(int i=1;i<=n;i++) fa[i]=i,nx[i]=ny[i]=0;
39     for(int i=1;i<=m;i++)
40     {
41             int x,y,c;
42             scanf("%d%d%d%s",&x,&y,&c,s);
43
44             t[i].x=x;t[i].y=y;t[i].c=c;
45             if(s[0]==‘E‘) t[i].p=0;
46             else if(s[0]==‘W‘) t[i].p=1;
47             else if(s[0]==‘N‘) t[i].p=2;
48             else t[i].p=3;
49     }
50     int q;
51     scanf("%d",&q);
52     for(int i=1;i<=q;i++)
53     {
54         int x,y,c;
55         scanf("%d%d%d",&x,&y,&c);
56         tt[i].x=x;tt[i].y=y;tt[i].c=c;
57         tt[i].p=i;
58     }
59     sort(tt+1,tt+1+q,cmp);
60     int now=0;
61     for(int i=1;i<=q;i++)
62     {
63         while(now<tt[i].c)
64         {
65             now++;
66             int x=t[now].x,y=t[now].y,c=t[now].c;
67             int ff=ffind(y);
68             nx[ff]=-nx[y];ny[ff]=-ny[y];fa[ff]=y;
69             nx[y]=ny[y]=0;fa[y]=x;
70
71             if(t[now].p==0) nx[y]=c;
72             else if(t[now].p==1) nx[y]=-c;
73             else if(t[now].p==2) ny[y]=c;
74             else ny[y]=-c;
75         }
76
77         int x=tt[i].x,y=tt[i].y;
78         if(ffind(x)!=ffind(y)) tt[i].ans=-1;
79         else
80         {
81             tt[i].ans=myabs(nx[x]-nx[y])+myabs(ny[x]-ny[y]);
82         }
83     }
84     sort(tt+1,tt+1+q,cmp2);
85     for(int i=1;i<=q;i++) printf("%d\n",tt[i].ans);
86     return 0;
87 }

[POJ 1984]

2016-10-27 18:26:37

时间: 2024-10-24 07:13:57

【POJ 1984】Navigation Nightmare(带权并查集)的相关文章

BZOJ 3362 POJ 1984 Navigation Nightmare 带权并查集

题目大意:一些农场由一些东西向或者南北向的路相互连接.在不断加边的过程中会询问两个农场的曼哈顿距离是多少,如果目前还不连通,那么输出-1. 思路:带权并查集,f[i]为点i到father[i]的距离,要维护两个值,一个是东西向的距离,一个是南北向的距离,因为以后更新的时候要用到.在合并的时候有些特殊.现在有一条边(x->y),设fx为x的根,fy为y的根,那么现在知道f到fx的距离,y到fy的距离,还知道x到y的距离,设fx到fy的距离为dis,则dis + f[y] = f[x] + edge

POJ 1984 - Navigation Nightmare - [带权并查集]

题目链接:http://poj.org/problem?id=1984 Time Limit: 2000MS Memory Limit: 30000K Case Time Limit: 1000MS Description Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000)

POJ 1984 Navigation Nightmare (数据结构-并查集)

Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 4072   Accepted: 1615 Case Time Limit: 1000MS Description Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series o

BZOJ 3362 Navigation Nightmare 带权并查集

题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题,不过POJ也有一道同样的题,可以刷一下 别被题目坑到了,这题不强制在线,把询问离线处理即可 然后就是带权并查集的问题了...将权值设为方向向量,重载+和-,按照正常权值并查集做就行了 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 40400 using namesp

Navigation Nightmare——带权并查集(多权值)

题目链接 题意: 给出n个农场,然后按时间依次给出m个关于农场相对位置的信息,之后会给出询问,问在t时刻,x到y的曼哈顿距离是多少. 题解: dx[i]维护 根节点到 i 的横坐标距离   dy[i]维护 根节点到 i 的纵坐标距离 并查集高效的地方就在于在使用Find(x)函数查找x的父结点的时候会把沿途递归访问到的所有结点直接连到父节点上,使得下一次查询可以直接找到父节点,代码表示就是f[x]=Find(f[x]); 之前接触到的都是比较裸的并查集,但就像这题,维护并查集的时候还需要维护点到

poj 2912 Rochambeau(带权并查集 + 暴力)

题目:poj 2912 Rochambeau(带权并查集 + 暴力) 题目大意:题目给出三个团队和一个裁判,这三个团队和裁判一起玩剪刀石头布,然后规定每个团队必须出一样的,只有裁判可以任意出.然后给出关系,x > y 代表 x 赢y , x < y代表 y 赢 x , 相等则出的一样.问这样的关系可以推出裁判是哪个吗?可以需要说明从第一条到第几条推出来的,不可以也要说明是不可能出现这样的关系,还是裁判不唯一. 解题思路:这题重点是裁判在里面会扰乱关系,并且n * m 才 100000,完全可以

POJ 1988 Cube Stacking (带权并查集)

题目链接:http://poj.org/problem?id=1988 有n个元素,开始每个元素自己 一栈,有两种操作,将含有元素x的栈放在含有y的栈的顶端,合并为一个栈.第二种操作是询问含有x元素下面有多少个元素. 经典的带权并查集,cnt表示包含这个元素的集合中所有元素个数,dis表示这个元素离最上面元素的个数(距离). 看代码领会一下吧. 1 #include <iostream> 2 #include <cstring> 3 #include <cstdio>

POJ 1182 食物链(带权并查集)

http://poj.org/problem?id=1182 题意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有人用两种说法对这N个动物所构成的食物链关系进行描述: 第一种说法是"1 X Y",表示X和Y是同类. 第二种说法是"2 X Y",表示X吃Y. 此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话

POJ 1773 Parity game 带权并查集

分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2:设计路径压缩算法 sum[x]=(sum[x]+sum[t])%2; 3:弄清合并根节点时的操作,小的在上: 注:这个题需要离散化 #include <stdio.h> #include <string.h> #include <algorithm> using names

POJ 1182 食物链 (带权并查集)

动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说法对这N个动物所构成的食物链关系进行描述: 第一种说法是"1 X Y",表示X和Y是同类. 第二种说法是"2 X Y",表示X吃Y. 此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的.当一句话满足下列三条之一时,这句话就是假话,否则