Python之Seaborn

install:

pip install seaborn

official examples: https://seaborn.pydata.org/examples/index.html

在mac上的bug:

在mac上运行会出现warnings.warn("tight_layout : falling back to Agg renderer")

需要在tight_layout()前添加plt.show(),如果tight_layout()被内置到了API中,我就不知道怎么办了。例子:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style="dark")
rs = np.random.RandomState(50)

# Set up the matplotlib figure
f, axes = plt.subplots(3, 3, figsize=(9, 9), sharex=True, sharey=True)

# Rotate the starting point around the cubehelix hue circle
for ax, s in zip(axes.flat, np.linspace(0, 3, 10)):

    # Create a cubehelix colormap to use with kdeplot
    cmap = sns.cubehelix_palette(start=s, light=1, as_cmap=True)

    # Generate and plot a random bivariate dataset
    x, y = rs.randn(2, 50)
    sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=ax)
    ax.set(xlim=(-3, 3), ylim=(-3, 3))
plt.show()  # I just add this line, and it works
f.tight_layout()
时间: 2024-10-09 13:38:15

Python之Seaborn的相关文章

Python可视化 | Seaborn包—kdeplot和distplot

import pandas as pd import numpy as np import seaborn as sns import matplotlib import matplotlib.pyplot as plt from scipy.stats import skew from scipy.stats.stats import pearsonr %config InlineBackend.figure_format = 'retina' %matplotlib inline 一.kde

7 Tools for Data Visualization in R, Python, and Julia

7 Tools for Data Visualization in R, Python, and Julia Last week, some examples of creating visualizations with htmlwidgets and R were presented. Fortunately, there are many more options available for creating nice visualizations. Tools and libraries

Python - Seaborn可视化:图形个性化设置的几个小技巧

1 概述 在可视化过程中,经常会对默认的制图效果不满意,希望能个性化进行各种设置. 本文通过一个简单的示例,来介绍seaborn可视化过程中的个性化设置.包括常用的设置,如: 设置图表显示颜色 设置图表标题,包括显示位置,字体大小,颜色等 设置x轴和y轴标题,包括颜色,字体大小 设置x轴和y轴刻度内容,包括颜色.字体大小.字体方向等 将x轴和y轴内容逆序显示 设置x轴或y轴显示位置 本文的运行环境: windows 7 python 3.5 jupyter notebook seaborn 0.

python seaborn 画图

python seaborn 画图 [email protected] 2017.08.02 画图的 方法太多了 ,不知什么情况用那一个好? 这些事是 seaborn 用来画图根据加载的数据 ,matplotlib也可以画图import seaborn as snssns.set(style="whitegrid", color_codes=True)这 个是设置画板的属性 distplot()lmplot()kdeplot() 画曲线,抛物线residplot 残差曲线jointpl

Python数据科学手册Seaborn马拉松可视化里时分秒转化为秒数的问题

Python数据科学手册Seaborn马拉松可视化里时分秒转化为秒数的问题 问题描述: 我实在是太懒了,问题描述抄的网上的哈哈哈:https://www.jianshu.com/p/6ab7afa059d1 在做Python Data Science Handbook的实例学习,4.16.3 案例:探索马拉松比赛成绩里,有提示将时分秒的时间化为秒的总数,以方便画图.书里给出的指令是: data['split_sec']=data['split'].astype(int)/1E9 data['fi

Python 绘图与可视化 seaborn

Seaborn是一个基于matplotlib的Python数据可视化库.它提供了一个高级界面,用于绘制有吸引力且信息丰富的统计图形. 主页:http://seaborn.pydata.org/ 官方教程:http://seaborn.pydata.org/tutorial.html#tutorial 功能介绍:http://seaborn.pydata.org/introduction.html#introduction 设置样式的:https://www.cnblogs.com/gczr/p/

Python统计分析可视化库seaborn(相关性图,变量分布图,箱线图等等)

Visualization of seaborn  seaborn[1]是一个建立在matplot之上,可用于制作丰富和非常具有吸引力统计图形的Python库.Seaborn库旨在将可视化作为探索和理解数据的核心部分,有助于帮人们更近距离了解所研究的数据集.无论是在kaggle官网各项算法比赛中,还是互联网公司的实际业务数据挖掘场景中,都有它的身影.    在本次介绍的这个项目中,我们将利用seaborn库对数据集进行分析,分别展示不同类型的统计图形. 首先,我们将导入可视化所需的所有必要包,我

Python图表分布数据可视化:Seaborn

conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / set_style() / axes_style() / despine() / set_context() import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns % ma

Python图表数据可视化Seaborn:4结构化图表可视化

1.基本设置 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns % matplotlib inline sns.set_style("ticks") sns.set_context("paper") # 设置风格.尺度 import warnings warnings.filterwarnings('ignore') # 不发出警告