OpenCV学习(20) grabcut分割算法

http://www.cnblogs.com/mikewolf2002/p/3330390.html

OpenCV学习(20) grabcut分割算法

在OpenCV中,实现了grabcut分割算法,该算法可以方便的分割出前景图像,操作简单,而且分割的效果很好。算法的原理参见papaer:“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts

比如下面的一副图,我们只要选定一个四边形框,把框中的图像作为grabcut的一个输入参数,表示该框中的像素可能属于前景,但框外的部分一定属于背景。

然后调用grabcut函数,就可以分割出城堡来。具体代码如下:

// 打开另一幅图像cv::Mat image= cv::imread("../tower.jpg");if (!image.data)    {    cout<<"不能打开图像!"<<endl;    return 0;     }

// 矩形外的像素是背景 cv::Rect rectangle(50,70,image.cols-150,image.rows-180);

cv::Mat result;//两个临时矩阵变量,作为算法的中间变量使用,不用carecv::Mat bgModel,fgModel; double tt = cv::getTickCount();// GrabCut 分段cv::grabCut(image,    //输入图像    result,   //分段结果    rectangle,// 包含前景的矩形     bgModel,fgModel, // 前景、背景    1,        // 迭代次数    cv::GC_INIT_WITH_RECT); // 用矩形tt = cv::getTickCount() - tt;printf("算法执行执行时间:%g ms\n", tt/cv::getTickFrequency()*1000);// 得到可能是前景的像素//比较函数保留值为GC_PR_FGD的像素cv::compare(result,cv::GC_PR_FGD,result,cv::CMP_EQ);// 产生输出图像cv::Mat foreground(image.size(),CV_8UC3,cv::Scalar(255,255,255));//背景值为 GC_BGD=0,作为掩码image.copyTo(foreground,result); 

grabCut函数的第一个参数为我们要处理的图像,本程序中就是image,图像的类型必须为:CV_8UC3

第二个参数是mask图像,它的大小和image一样,但是它的格式为CV_8UC1,只能是单通道的,grabcut算法的结果就保存在该图像中。

前面的代码中,我们并没有对mask图像(result)进行初始化设置,因为第6个参数为cv::GC_INIT_WITH_RECT,它表示算法会根据rectangle的范围,来生成一个初始化的mask图像。

cv::grabCut(image,    //输入图像 
    result,   //分段结果 
    rectangle, // 包含前景的矩形 
    bgModel,fgModel, // 前景、背景 
    1,        // 迭代次数 
    cv::GC_INIT_WITH_RECT); // 用矩形

mask图像的值只能为下面下面4个值(PR,probably表示可能的):

GC_BGD    = 0,  //背景

GC_FGD    = 1,  //前景 
GC_PR_BGD = 2,  //可能背景

GC_PR_FGD = 3   //可能前景

根据rectangle生成的mask图像规则为:四边形外面的部分一定是背景,所以在mask图中对应的像素值为GC_BGD,而四边形内部的的值可能为前景,所以对应的像素值为GC_PR_FGD。所以我们程序中使用mask图像应该如下图所示。

如果第7个参数为GC_INIT_WITH_MASK,这时第三个参数rectangle没有使用,我们必须在调用grabcut函数之前,手工设置mask图像(变量result),如果我们把result设置成上图所示的灰度图。那个调用函数

cv::grabCut(image1,    //输入图像 
    result1,   //分段结果 
    rectangle, // 包含前景的矩形 
    bgModel,fgModel, // 前景、背景 
    1,        // 迭代次数 
    cv::GC_INIT_WITH_MASK); // 用矩形

可以得到同样的结果。 
可以参考下面的代码:

cv::Mat result1= cv::Mat(image1.rows, image1.cols,CV_8UC1, cv::Scalar(cv::GC_BGD));//注意给子矩阵赋值的方法cv::Mat roi(result1, cv::Rect(50,70,result1.cols-150,result.rows-180));roi = cv::Scalar(cv::GC_PR_FGD);tt = cv::getTickCount();// GrabCut 分段cv::grabCut(image1,    //输入图像    result1,   //分段结果    rectangle,// 包含前景的矩形     bgModel,fgModel, // 前景、背景    1,        // 迭代次数    cv::GC_INIT_WITH_MASK); // 用矩形tt = cv::getTickCount() - tt;printf("算法执行执行时间:%g ms\n", tt/cv::getTickFrequency()*1000);

// 得到可能是前景的像素//比较函数保留值为GC_PR_FGD的像素cv::compare(result1,cv::GC_PR_FGD,result,cv::CMP_EQ);// 产生输出图像cv::Mat foreground1(image1.size(),CV_8UC3,cv::Scalar(255,255,255));//背景值为 GC_BGD=0,作为掩码image.copyTo(foreground1,result1); 

第3个参数是rectangle的大小位置,如果第7个参数为GC_INIT_WITH_MASK,则该参数没有作用。

第4,5个参数是两个算法在执行过程中使用临时矩阵变量,不用care它们的内容。

第6个参数是迭代次数,迭代越多,效果越好,但划时间也越长。

第7个参数是操作模式,通常情况下为GC_INIT_WITH_RECT和GC_INIT_WITH_MASK。

从上面的图中,我们可以看到,grabcut算法的效果很好,但是花的时间也很长,上面图像在我的笔记本上需要4.4秒。

程序源代码:工程FirstOpenCV13

时间: 2024-10-10 10:03:03

OpenCV学习(20) grabcut分割算法的相关文章

Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练

在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资料都可以查到,简单来说,就是将图像分成一个cell,通过对每个cell的像素进行梯度处理,进而根据梯度方向和梯度幅度来得到cell的图像特征.随后,将每个cell的图像特征连接起来,得到一个BLock的特征,进而得到一张图片的特征.Opencv当中自带HOG算法,可以直接调用,进行图像的特征提取.但

OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报 分类: 机器视觉(34) 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记(28)KA

OpenCV学习 3:平滑过度与边缘检测

原创文章,欢迎转载,转载请注明出处  用来记录学习的过程,这个是简单的相关函数的熟悉,内部机制和选择何种选择函数参数才能达到自己的要求还不太清楚,先学者吧..后面会慢慢清楚的.     和前面相比,主要用了三个新的函数cvCreateImage,cvSmooth,cvCanny.      cvCreateImage用来创建分配图像空间,创建两个,分别保存平滑处理后的图片,然后将平滑处理后的图片(相当于滤波了)进行边缘检测..代码很简单,opencv很强大,简单的几个函数就完成了如此牛逼的东西.

OpenCV &mdash;&mdash; 图像局部与分割(二)

分水岭算法 将图像中的边缘转化成"山脉",将均匀区域转化为"山谷" 分水岭算法首先计算灰度图像的梯度,这对山谷或没有纹理的盆地(亮度值低的点)的形成有效,也对山头或图像中没有主导线段的山脉(山脊对应的边缘)的形成有效.然后开始从用户指定点或算法得到的点开始"灌注"盆地知道这些区域连在一起.基于这样产生的标记就可以把区域合并到一起,合并后的区域又通过聚集的方式进行分割,好像图像被"填充"起来. cvWatershed 用 Inp

《OpenCV:灰度图像阈值化分割常见方法总结及VC代码》

支持原创,拿来收藏!转载地址:http://blog.csdn.net/likezhaobin/article/details/6915755?userName=u014395105&userInfo=aWOfy4XjkeuESVqMgVdrnPewKx6gaD2TZ6xUFF%2FXs%2FeZjmZKRHLyhzVPli3izF4JpSQuVNfcdFRe6pvuXl6VvRJ%2FSmjVpClq8XgXbwl56GUA19Luch91NWA57umNAidF94p6X1kqBpQ9l4%

Opencv 学习资料集合(更新中。。。)

基础学习笔记之opencv(24):imwrite函数的使用 tornadomeet 2012-12-26 16:36 阅读:13258 评论:9 基础学习笔记之opencv(23):OpenCV坐标体系的初步认识 tornadomeet 2012-12-12 00:25 阅读:3803 评论:3 基础学习笔记之opencv(22):learning OpenCV书中一个连通域处理函数 tornadomeet 2012-12-11 21:08 阅读:4913 评论:4 基础学习笔记之opencv

从决策树学习谈到贝叶斯分类算法、EM、HMM --别人的,拷来看看

从决策树学习谈到贝叶斯分类算法.EM.HMM 引言 最近在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类 & 分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考.行文杂乱,但侥幸若能对读者起到一点帮助,则幸甚至哉. 本文借鉴和参考了两本书,一本是T

opencv学习---运动目标(前景)检测

opencv学习---运动目标(前景)检测 1.帧差法 原理:视频序列相邻两帧或三帧间采用基于像素的时间差分,通过闭值化来提取出图像中的运动区域. 优点:算法简单.计算量小,无需训练背景,对缓慢变换的光照不是很敏感. 缺点:容易受天气.阴影及杂乱背景干扰,阈值T的选择相当关键,稳定性差. 2.背景差分法 原理:用背景的参数模型来近似背景图像,将当前帧与背景图像进行差分比较实现对运动区域的检测 优点:计算量小,较高的实时性,利用已有帧信息进行背景动态更新 缺点:如何建立对于不同场景的动态变化均具有

从决策树学习谈到贝叶斯分类算法、EM、HMM

从决策树学习谈到贝叶斯分类算法.EM.HMM 引言 近期在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描写叙述下自己所知道的几种分类或聚类算法(当然,这全然不代表你将来的面试中会遇到此类问题,仅仅是由于我的简历上写了句:熟悉常见的聚类 & 分类算法而已),而我向来恨对一个东西仅仅知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来经常回想思考.行文杂乱,但侥幸若能对读者起到一点帮助,则幸甚至哉. 本文借鉴和參考了两本书,