BZOJ 4503 两个串(FFT)

【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=4503

【题目大意】

  给出S串和T串,计算T在S中出现次数,T中有通配符‘?‘。

【题解】

  我们定义f[x]=sum_{i=0}^{n-1}|s1[i]-s2[i]|,当f[x]=0时,两个字符串相等。因为考虑到这里还有适配符,所以用f[x]=sum_{i=0}^{n-1}(s1[i]-s2[i])*(s1[i]-s2[i])*s1[i]*s2[i]来表示匹配函数。我们可以发现,如果将一个串倒置,那么这就是一个卷积的式子。因此我们将多项式展开,将得到的相加的三段式子,做三次FFT,将结果汇总,然后统计即可。

【代码】

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=1048600;
int n,pos[N];
namespace FFT{
    struct comp{
        double r,i;
        comp(double _r=0,double _i=0):r(_r),i(_i){}
        comp operator +(const comp&x){return comp(r+x.r,i+x.i);}
        comp operator -(const comp&x){return comp(r-x.r,i-x.i);}
        comp operator *(const comp&x){return comp(r*x.r-i*x.i,i*x.r+r*x.i);}
        comp conj(){return comp(r,-i);}
    }A[N],B[N];
    const double pi=acos(-1.0);
    void FFT(comp a[],int n,int t){
        for(int i=1;i<n;i++)if(pos[i]>i)swap(a[i],a[pos[i]]);
        for(int d=0;(1<<d)<n;d++){
            int m=1<<d,m2=m<<1;
            double o=pi*2/m2*t;
            comp _w(cos(o),sin(o));
            for(int i=0;i<n;i+=m2){
                comp w(1,0);
                for(int j=0;j<m;j++){
                    comp& A=a[i+j+m],&B=a[i+j],t=w*A;
                    A=B-t;B=B+t;w=w*_w;
                }
            }
        }if(t==-1)for(int i=0;i<n;i++)a[i].r/=n;
    }
}
int l1,l2,ans[N],cnt=0,a[N],b[N];
FFT::comp A[N],B[N],C[N];
char s1[N],s2[N];
int main(){
    scanf(" %s %s",&s1,&s2);
    l1=strlen(s1); l2=strlen(s2);
    for(int i=0;i<l1;i++)a[i]=s1[i]-‘a‘+1;
    for(int i=0;i<l2;i++)b[l2-1-i]=s2[i]==‘?‘?0:s2[i]-‘a‘+1;
    int N=1; while(N<l1+l2)N<<=1;
    int j=__builtin_ctz(N)-1;
    for(int i=0;i<N;i++){pos[i]=pos[i>>1]>>1|((i&1)<<j);}
    for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i]*a[i],0),B[i]=FFT::comp(b[i],0);
    FFT::FFT(A,N,1);FFT::FFT(B,N,1);
    for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i];
    for(int i=0;i<N;i++)A[i]=FFT::comp(a[i],0),B[i]=FFT::comp(b[i]*b[i]*b[i],0);
    FFT::FFT(A,N,1);FFT::FFT(B,N,1);
    for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i];
    for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i],0),B[i]=FFT::comp(b[i]*b[i],0);
    FFT::FFT(A,N,1);FFT::FFT(B,N,1);
    for(int i=0;i<N;i++)C[i]=C[i]-A[i]*B[i]*FFT::comp(2,0);
    FFT::FFT(C,N,-1);
    for(int i=l2-1;i<l1;i++){
        if(C[i].r<0.5)ans[cnt++]=i-l2+1;
    }printf("%d\n",cnt);
    for(int i=0;i<cnt;i++)printf("%d\n",ans[i]);
    return 0;
}

  

时间: 2024-10-11 16:25:08

BZOJ 4503 两个串(FFT)的相关文章

BZOJ 4503 两个串 ——FFT

[题目分析] 定义两个字符之间的距离为 (ai-bi)^2*ai*bi 如果能够匹配,从i到i+m的位置的和一定为0 但这和暴力没有什么区别. 发现把b字符串反过来就可以卷积用FFT了. 听说KMP+暴力可以卡到100ms以内(雾) [代码] #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using na

BZOJ4503 两个串 FFT

题目传送门 - BZOJ4503 题意概括 给定两个字符串S和T,回答T在S中出现了几次,在哪些位置出现.注意T中可能有?字符,可以匹配任何字符. 题解 首先,假装你已经知道了这是一道$FFT$题. 考虑怎样$FFT$. 字符串匹配的时候,对于匹配成功的对应字母的编号(比如分别是$i$和$j$),满足了$i-j$都相同.但是我们需要的是$i+j$都相等. 于是我们用$FFT$的经典套路,翻转$T$串. 我们构造一个卷积: $\sum_{i=0}^{n}\sum_{j=0}^{m}(S_{i}-T

bzoj4403 两个串

Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有“?”字符,这个字符可以匹配任何字符. Input 两行两个字符串,分别代表S和T Output 第一行一个正整数k,表示T在S中出现了几次 接下来k行正整数,分别代表T每次在S中出现的开始位置.按照从小到大的顺序输出,S下标从0开始. 两个串a,b相等(b中有通配符)当且仅当Σ(a[i]-b[i])2b[i]=0,其中a[i],b[i]为对应字符的对应编号,

[bzoj P4504] K个串

[bzoj P4504] K个串 [题目描述] 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次). 兔子们想知道,在这个数字序列所有连续的子串中,按照以上方式统计其所有数字之和,第k大的和是多少. [输入格式] 第一行,两个整数n和k,分别表示长度为n的数字序列和想要统计的第k大的和 接下里一行n个数a_i,表示这个数字序列 [输出格式] 一行一个整数,表示第k大的和 [样例输入] 7 5

UESTC 883 方老师与两个串

CF原题 由题可知,n,m太大,无法开出dp[n][m]的数组. 观察发现s/e最大为300,也就是说,选用第一种操作的次数不会超过300. 于是定义dp[i][j],第一个串的前i个数,使用了j次第一种操作的时候,第二个串最少删了多少个数. 转移有两种情况: 1.当前位置不删,这时dp[i][j]=dp[i-1][j]: 2.当前位置删,此时就需要在B串中找和当前位置的数相同的数的位置,并且只有在找到的位置大于dp[i-1][j-1]的时候才是可行的.为了保证dp[i][j]最小,显然就是找大

数据结构——算法之(032)(求两个串中的第一个最长子串)

[申明:本文仅限于自我归纳总结和相互交流,有纰漏还望各位指出. 联系邮箱:[email protected]] 题目: 求两个串中的第一个最长子串(神州数码曾经试题).如"abractyeyt","dgdsaeactyey"的最大子串为"actyey". 题目分析: 1.这里仅仅是实现了简单的字符串算法(最大支持字符串长度64),主要是展示算法思想 2.思路是把2个字符串每一个字符的匹配关系,映射到一张二维数组表中,匹配写1,非匹配写0 算法实现

求两个串的最大子序列(非字串)

问题:求两个串的最大子序列(并非连接的) Java代码: import java.util.Set; import java.util.StringJoiner; public class Main { public static int getL(String a, String b) { if (a.isEmpty()||b.isEmpty()) return 0; if (a.charAt(0) == b.charAt(0)) return getL(a.substring(1), b.s

bzoj4503: 两个串 bitset

题目链接 bzoj4503: 两个串 题解 暴一发bitset f[i][j] 表示 S[1..i] 是否有个后缀能匹配 T[1..j] 那么假设 S[i+1] 能匹配 T[s],令 f[i+1][s] | = f[i][s-1] 所以预处理理出每个字符能匹配 T的哪些位置,设为[c] 那么 f[i]=((f[i-1]<<1)|(1<<1)) & mat[S[i]] 直接在mat上做匹配就好了 时间复杂度:O(|S||T|/32) 代码 #include<cstdio

SPOJ 1811 Longest Common Substring(求两个串的最长公共子串)

http://www.spoj.com/problems/LCS/ 题目:求两个串的最长公共子串 分析: 以A建立SAM 让B在SAM上匹配可以类比于kmp思想,我们知道在Parent树上,fa是当前节点的子集,也就是说满足最大前缀,利用这个就可以做题了 #include <bits/stdc++.h> #define LL long long #define P pair<int, int> #define lowbit(x) (x & -x) #define mem(a