无监督学习之聚类1——Kmeans

Kmeans算法分析31省市消费水平

#coding=utf-8

import numpy as np
from sklearn.cluster import KMeans

def loadData(filepath):
    fr = open(filepath, ‘r+‘)
    lines = fr.readlines()
    retData = []
    retCityName = []
    for line in lines:
        items = line.strip().split(",")#以逗号为分割符读取数据
        retCityName.append(items[0]) #将城市名加到城市名数据列表中
        retData.append([float(items[i]) for i in range(1,len(items))])
        #将数据中的其他data转化为float后加到retData中
    return retData,retCityName

if __name__ == ‘__main__‘:
    data,cityName = loadData(‘F:\data\city.txt‘)
    km = KMeans(n_clusters=4) #分成的簇的数目
    label = km.fit_predict(data)#计算簇中心及为簇分配序号
    expenses = np.sum(km.cluster_centers_, axis=1) #axis按行求和

    CityCluster = [[],[],[],[]]#设置与簇数目对应的列表数来存储数据
    #将每个城市分成设定的簇
    for i in range(len(cityName)):
        CityCluster[label[i]].append(cityName[i]) #将每个簇的城市名输出
    #输出每个簇的平均消费
    for i in range(len(CityCluster)):
        print("Expenses: %.2f"%expenses[i])
        print(CityCluster[i])

  运算后;

Expenses: 4512.27
[‘江苏‘, ‘安徽‘, ‘湖南‘, ‘湖北‘, ‘广西‘, ‘海南‘, ‘四川‘, ‘云南‘]
Expenses: 7754.66
[‘北京‘, ‘上海‘, ‘广东‘]
Expenses: 5678.62
[‘天津‘, ‘浙江‘, ‘福建‘, ‘重庆‘, ‘西藏‘]
Expenses: 3788.76
[‘河北‘, ‘山西‘, ‘内蒙古‘, ‘辽宁‘, ‘吉林‘, ‘黑龙江‘, ‘江西‘, ‘山东‘, ‘河南‘, ‘贵州‘, ‘陕西‘, ‘甘肃‘, ‘青海‘, ‘宁夏‘, ‘新疆‘]

时间: 2024-10-12 11:45:59

无监督学习之聚类1——Kmeans的相关文章

2019-07-25【机器学习】无监督学习之聚类 K-Means算法实例 (1999年中国居民消费城市分类)

样本 北京,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64天津,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08河北,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63山西,1406.33,477.77,290.15,208.57,201.50,414.72,281.84,212.10内蒙古,1303.9

5.无监督学习-DBSCAN聚类算法及应用

DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1.核心点:在半径Eps内含有超过MinPts数目的点. 2.边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内的点. 3.噪音点:既不是核心点也不是边界点的点. 如下图所示:图中黄色的点为边界点,因为在半径Eps内,它领域内的点不超过MinPts个,我们这里设置的MinPts为5

无监督学习之聚类2——DBSCAN

根据学生月上网时间数据运用DBSCAN算法计算: #coding=utf-8 import numpy as np import sklearn.cluster as skc from sklearn import metrics import matplotlib.pyplot as plt mac2id = dict() onlinetimes = [] f = open('F:\data\TestData.txt', encoding='utf-8') for line in f: mac

Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components

聚类算法--K-means和k-mediods/密度聚类/层次聚类

目录 简述 K-means聚类 密度聚类 层次聚类 一.简述 聚类算法是常见的无监督学习(无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类). 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,个人觉得认为这种方法用的比较少 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这

【ML-7】聚类算法--K-means和k-mediods/密度聚类/层次聚类

目录 简述 K-means聚类 密度聚类 层次聚类 一.简述 聚类算法是常见的无监督学习(无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类). 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,个人觉得认为这种方法用的比较少 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这

[机器学习][K-Means] 无监督学习之K均值聚类

有监督学习虽然高效.应用范围广,但最大的问题就是需要大量的有标签的数据集,但现实生活中我们遇到的大量数据都是没有明确标签的,而且对于庞大的数据集进行标注工作本身也是一项费时费力的工作模式,所以我们希望找到一种方法能自动的挖掘数据集中各变量的关系,然后"总结"出一些规律和特征进行分类,这样的方法我们成为无监督学习(Unsupervised learning). 在无标签的数据集中进行分类的方法成为聚类.顾名思义,聚类就是依照某种算法将相似的样本聚在一起形成一类,而不管它的标签是什么.在聚

无监督学习——K-均值聚类算法对未标注数据分组

无监督学习 和监督学习不同的是,在无监督学习中数据并没有标签(分类).无监督学习需要通过算法找到这些数据内在的规律,将他们分类.(如下图中的数据,并没有标签,大概可以看出数据集可以分为三类,它就是一个无监督学习过程.) 无监督学习没有训练过程. 聚类算法 该算法将相似的对象轨道同一个簇中,有点像全自动分类.簇内的对象越相似它的分类效果越好. 未接触这个概念可能觉得很高大上,稍微看了一会其实算法的思路和KNN一样很简单. 原始数据集如下(数据有两个特征,分别用横纵坐标表示),原始数据集并没有任何标

05_无监督学习--聚类模型--K 均值

无监督学习--聚类模型--K 均值0.引入依赖1.数据的加载和预处理2.算法实现3.测试 无监督学习--聚类模型--K 均值 0.引入依赖 import numpy as npimport matplotlib.pyplot as plt # 这里直接 sklearn 里的数据集from sklearn.datasets.samples_generator import make_blobs 1.数据的加载和预处理 x, y = make_blobs(n_samples=100, centers