八皇后(JAVA算法实现)

在学习现代软件工程构建之法这门课时,老师要求发表一篇博客,使用JAVA算法实现八皇后问题的求解。写这篇博客时,我学习了一些其他的博客,因为我常常遇到问题,自己无法解决时,向他人学习也是一种方法。

国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

我们可以逐行或者逐列来进行可行摆放方案的遍历,每一行(或列)遍历出一个符合条件的 位置,接着就到下一行或列遍历下一个棋子的合适位置,这种遍历思路可以保证我们遍历过程中有一个条件是绝对符合的——就是下一个棋子的摆放位置与前面的棋 子不在同一行(或列)。接下来,我们只要判断当前位置是否还符合其他条件,如果符合,就遍历下一行(或列)所有位置,看看是否继续有符合条件的位置,以此 类推,如果某一个行(或列)的所有位置都不合适,就返回上一行(或列)继续该行(或列)的其他位置遍历,当我们顺利遍历到最后一行(或列),且有符合条件 的位置时,就是一个可行的8皇后摆放方案,累加一次八皇后可行方案的个数,然后继续遍历该行其他位置是否有合适的,如果没有,则返回上一行,遍历该行其他 位置,依此下去。这样一个过程下来,我们就可以得出所有符合条件的8皇后摆放方案了。这是递归思路。

接下来,我们以逐列遍历,具体到代码,进一步说明。首先,从第一列开始找第一颗棋子的合适位置,我们知道,此时第一列的任何一个位置都是合适的,当棋子找 到第一个合适的位置后,就开始到下一列考虑下一个合适的位置,此时,第二列的第一行及第二行显然就不能放第二颗棋子了,因为其与第一个棋子一个同在一行, 一个同在一条斜线上。第二列第三行成为第二列第一个合适的位置,以此类推,第三列的第5行又会是一个合适位置,这个过程中,我们注意到,每一列的合适位置 都是受到前面几列的位置所影响,假设前面1列的棋子放在第3行,那当前列不能放的位置就一定是3行,2行,4行。例如用cols数组来表示8个列棋子所放的行数,数组下标从0开始,其中数组下标表示列数,数组的元素值表示该列棋子所在行数,当前列为N(N>=0,N<8),则:

cols[N] != cols[N-1]

cols[N] != cols[N-1]-1

cols[N]!=cols[N-1]+1

如果N-2列存在的话,那么我们还要考虑当前列N不与N-2列的棋子同行,同斜线,同反斜线。把当前列N的前面的某一列设为m,则m的所有取值为{m>=0,m<N}的集合,则:

cols[N] != cols[m]

cols[N] != cols­­[m] -(N-m)

cols[N] != cols­­[m] + (N-m)
  具体代码如下:

public class Queen8{
public static int num=0;
public static final int MAXQUEEN=8;
public static int[] col=new int[MAXQUEEN];
public Queen8(){
getArrangement(0);
System.out.print("/n");
System.out.println(MAXQUEEN+“八皇后问题有”+num+“种摆放方法。”);
}
public void getArrangement(int n){
boolean[] rows=new boolean[MAXQUEEM];
for(int i=0;i=0)rows[cols[i]-d]=true;
if(cols[i]+d八皇后(JAVA算法实现)

时间: 2024-10-03 19:23:53

八皇后(JAVA算法实现)的相关文章

八皇后java算法

public class NQueens {  public static int num = 0; // 累计方案总数 public static final int MAXQUEEN = 5;// 皇后个数,同时也是棋盘行列总数 public static int[] cols = new int[MAXQUEEN]; // 定义cols数组,表示n列棋子摆放情况 public NQueens() {  // 核心函数,从第0列开始 getArrangement(0);  System.ou

八皇后—Java

package queen; public class queen { static boolean col[] = new boolean[8]; static boolean main_diagonal[] = new boolean[15]; static boolean counter_diagonal[] = new boolean[15]; static int record[]=new int[8]; static int count = 0; public static void

python解决八皇后问题

经典回溯算法:八皇后问题 算法要求: 在国际象棋棋盘上(8*8)放置八个皇后,使得任意两个皇后之间不能在同一行,同一列,也不能位于同于对角线上. 国际象棋的棋盘如下图所示: 问共有多少种不同的方法,并且指出各种不同的放法. # -*- coding:utf-8 -*- __author__ = "tyomcat" print("******八皇后问题的解决方法******") def next_col(current, n=8): length = len(curr

八皇后92

#include <stdlib.h>   #include <stdio.h>       int m[8][8] = {0};//表示棋盘,初始为0,表示未放置皇后   int num = 0;//解数目     //对于棋盘前row-1行已放置好皇后   //检查在第row行.第column列放置一枚皇后是否可行    bool check(int row,int column)    {        if(row==1) return true;        int i

回溯算法解八皇后问题(java版)

八皇后问题是学习回溯算法时不得不提的一个问题,用回溯算法解决该问题逻辑比较简单. 下面用java版的回溯算法来解决八皇后问题. 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 思路是按行来规定皇后,第一行放第一个皇后,第二行放第二个,然后通过遍历所有列,来判断下一个皇后能否放在该列.直到所有皇后都放完,或者放哪

八皇后问题求解java(回溯算法)

八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 代码实现 static int count = 0;//记录有几种方法 int max = 8;//max表示几个皇后 int[] arr = new int[max];//用一个数组表示,其中arr[n]表示放在第arr[n]+1列,n表示第n+1个

简述java递归与非递归算法,0-100求和,斐波那契数列,八皇后,汉诺塔问题

一:什么是递归算法? 递归算法就是直接或者间接的调用自己的方法,在达到一个条件的时候停止调用(递归出口),所以一定要找准好条件,让递归停止,否则就会是无限进行下去 二:递归程序设计的关键 1:找出调用中所需要的参数 2:返回的结果 3:递归调用结束的条件 三:递归程序注意 1:要有方法中自己调用自己 2:要有分支结构 3:要有结束的条件 四:简单叙述递归函数的优缺点 优点: 1:简洁清晰,实现容易,可读性好 2:在遍历的算法中,递归比循环更为简单 缺点: 1:效率低,使用递归函数是有空间和时间的

【八皇后问题】 回溯算法

回溯算法:回溯算法实际上是一个类似枚举的搜索尝试方法,它的思想是在搜索尝试中寻找问题的解,当发现不满足求解条件时,就“回溯”返回,尝试别的路径.之前介绍的基础算法中的贪婪算法,动态规划等都具有“无后效性”,也就是在分段处理问题时,某状态一旦确定,将不再改变.而多数问题很难找到"无后效性”的阶段划分和相应决策,而是通过深入搜索尝试和回溯操作完成的. 八皇后问题:8*8的国际象棋棋盘中放八个皇后,是任意两个皇后不能互相吃掉.规则:皇后能吃掉同一行,同一列,同一对角线的任意棋子. 模型建立:不妨设八个

求解八皇后问题的退火算法

这个算法收敛速度还算满意.此算法可以计算n皇后问题,只需要将n改为相应整数即可! 主程序: clear; clc; %% %八皇后问题,8X8的棋盘上,放置8个皇后,使之两两都不能攻击 %使用退火算法计算 %初始的状态,随机在棋盘上放置8个皇后,每列放一个,使每一行都不能攻击 n = 8; %8皇后 %% %产生一个随机的状态 state = randperm(n); %% %计算当前状态的h函数值(与目标状态的差距,h越大,差距越大.h=0代表此状态即为目标状态) h = fun_c(stat