webrtc 的回声抵消(aec、aecm)算法简介(转)

webrtc 的回声抵消(aec、aecm)算法简介

webrtc 的回声抵消(aec、aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波) 4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT)。考虑到webrtc使用的NLMS、NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特色的地方。

1) 回声时延估计

回声延时长短对回声抵消器的性能有比较大的影响(此处不考虑pc上的线程同步的问题),过长的滤波器抽头也无法实际应用,因此时延估计算法就显得比较重要了。常用且容易想到的估计算法是基于相关的时延估计算法(学过通信原理的应该不会陌生),另外相关算法在语音编码中也得到广泛的应用,如 amr系列,G.729系列 ,G.718等编码器。在语音信号自相关求基音周期时,由于编码器一般按帧处理,帧长度一般是10或20ms,在该时延范围内搜索基音周期运算量较小,然而对于回声抵消的应用场合,延时搜索范围比较大,带来很高的运算复杂度。在手持终端设备上,我们需要考虑移动环境的变化对算法性能的影响,比如时延是否随机变化,反射路径线性还是非线性,以及运算量(电池)是否符合要求,则更为复杂。

回到webrtc的回声时延估计,它采用的是gips首席科学家Bastiaan的算法。下面介绍一下该算法的主要思想:

设1表示有说话音,0表示无说话音(静音或者很弱的声音),参考端(远端)信号x(t)和接收端(近端)信号y(t)可能的组合方式有以下几种:(0,0),(0,1),(1,0),(1,1),

(0,0)表示远端和近端都是比较弱的声音,(1,1)表示远端和近端都是比较强的声音,webrt的c代码默认其它两种情况是不可能发生的。设在时间间隔p上,即p=1,2,...,P,  频带q,q=1,2,...,Q上,输入信号x加窗(如汉宁窗)后的功率谱用Xw(p,q)来表示,对每个频带中的功率谱设定一个门限Xw(p,q)_threshold,

如果 Xw(p,q)  >= Xw(p,q)_threshold  ,   则Xw(p,q) =1;

如果 Xw(p,q) <    Xw(p,q)_threshold  ,   则Xw(p,q) =0;

同理,对于信号y(t),加窗信号功率谱Yw(p,q)和门限Yw(p,q)_threshold,

如果 Yw(p,q) >= Yw(p,q)_threshold   ,   则Yw(p,q) =1;

如果 Yw(p,q) < Yw(p,q)_threshold ,        则Yw(p,q) =0;

考虑到实际处理的方便,在webrtc的c代码中,将经过fft变换后的频域功率谱分为32个子带,这样每个特定子带 Xw(p,q)的值可以用1个比特来表示,总共需要32个比特,只用一个32位数据类型就可以表示了。

webrtc对参考信号定义了75个32位binary_far_history的数组存放历史远端参考信号,定义了16个32位binary_near_history的数组存放历史近端参考信号,最近的值都放在下标为0的数组中,使用binary_near_history[15]的32位bit与binary_far_history数组中75个32位bit分别按位异或,得到75个32位比特数据,32位bit的物理意义是近似地使用功率谱来统计两帧信号的相关性。统计32位结果中的1的个数存于bit_counts中,接下来用对bit_counts进行平滑防止延时突变,得到mean_bit_count,可以看出  mean_bit_count 越小,则表明近端数据与该帧的远端数据越吻合,两者的时延越接近所需要的延时数值,用value_best_candidate表示。剩下的工作是对边界数值进行保护,如果value_best_candidate接近最差延时(预设),则表明数值不可靠,这时不更新延时数据;如果数据可靠,则进一步使用一阶markvo模型,比照上一次时延数据确定本次最终的更新时延last_delay.

Bastiaan的专利本身要比现有的c代码实现更为复杂,比如在异或的时候(0,0),(0,1),(1,0),(1,1)四种组合可以附加代价函数,而c代码相当于默认给(0,0),(1,1)附加权值为1,给(0,1),(1,0)附加权值为0;

另外c代码算法是按帧顺序依次对远端和近端数组异或,实际应用时也可以每隔1帧或2帧做异或,这样可以扩大搜索范围。

总的来说webrtc的时延估计算法复杂度比求相关大大简化,尤其适用于移动终端等对运算量比较敏感的场合进行回声消除。针对实际应用场合,算法还有提升的空间。

2) NLMS(归一化最小均方自适应算法

LMS/NLMS/AP/RLS等都是经典的自适应滤波算法,此处只对webrtc中使用的NLMS算法做简略介绍。

设远端信号为x(n),近段信号为d(n),W(n),则误差信号e(n)=d(n)-w‘(n)x(n)  (此处‘表示转秩),NLMS对滤波器的系数更新使用变步长方法,即步长u=u0/(gamma+x‘(n)*x(n));其中u0为更新步长因子,gamma是稳定因子,则滤波器系数更新方程为 W(n+1)=W(n)+u*e(n)*x(n);  NLMS比传统LMS算法复杂度略高,但收敛速度明显加快。LMS/NLMS性能差于AP和RLS算法。

另外值得一提的是webrtc使用了分段块频域自适应滤波(PBFDAF)算法,这也是自适应滤波器的常用算法。

自适应滤波的更多资料可以参考simon haykin 的《自适应滤波器原理》。

3) NLP(非线性滤波)

webrtc采用了维纳滤波器。此处只给出传递函数的表达式,设估计的语音信号的功率谱为Ps(w),噪声信号的功率谱为Pn(w),则滤波器的传递函数为H(w)=Ps(w)/(Ps(w)+Pn(w))。

4)CNG(舒适噪声产生)

webrtc采用的舒适噪声生成器比较简单,首先生成在[0 ,1 ]上均匀分布的随机噪声矩阵,再用噪声的功率谱开方后去调制噪声的幅度。

总的说来,webrtc的aec算法简单、实用、易于商业化,另一方面猜测c代码还有所保留。

由于工作需要,最近一直在研究WebRTC里的AEC算法。根据源码里面的fullaec.m文件,

总体来说,我认为该AEC算法是属于分段快频域自适应滤波算法,Partioned block frequeney domain adaPtive filter(PBFDAF)。具体可以参考Paez Borrallo J M and Otero M G

使用该AEC算法要注意两点:

1)延时要小,因为算法默认滤波器长度是分为12块,每块64点,按照8000采样率,也就是12*8ms=96ms的数据,而且超过这个长度是处理不了的。

2)延时抖动要小,因为算法是默认10块也计算一次参考数据的位置(即滤波器能量最大的那一块),所以如果抖动很大的话找参考数据时不准确的,这样回声就消除不掉了。

时间: 2024-11-01 00:41:28

webrtc 的回声抵消(aec、aecm)算法简介(转)的相关文章

拓展 - Webrtc 的回声抵消(aec、aecm)算法简介

webrtc 的回声抵消(aec.aecm)算法简介 webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波) 4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT).考虑到webrtc使用的NLMS.NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特色的地方. 1

【转帖】WebRTC回声抵消模块简要分析

webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:回声时延估计:NLMS(归一化最小均方自适应算法):NLP(非线性滤波):CNG(舒适噪声产生).一般经典aec算法还应包括双端检测(DT). 考虑到webrtc使用的NLMS.NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特色的地方. 1) 回声时延估计回声延时长短对回声抵消器的性能有比较大的影响(此处不

TF-IDF算法简介

TF-IDF算法全称为term frequency–inverse document frequency.TF就是term frequency的缩写,意为词频.IDF则是inverse document frequency的缩写,意为逆文档频率. 该算法在信息处理中通常用来抽取关键词.比如,对一个文章提取关键词作为搜索词,就可以采用TF-IDF算法. 要找出一篇文章中的关键词,通常的思路就是,就是找到出现次数最多的词.如果某个词很重要,它应该在这篇文章中多次出现.于是,我们进行"词频"

最小生成树 kruskal算法简介

生成树--在一个图中的一个联通子图  使得所有的节点都被(访问) 最小生成树 (MST) 即联通子图的总代价(路程)最小 已知的一个图 有n个点 m条边 kruskal的算法如下 先对边从小到大排序 从最小的边起,不停的合并这条边的两个节点到一个集合,如果这条边的两个节点已经在一个集合里,则无视,否则形成回路(显然错误)直到所有的节点并到一个集合里 这里需要用到并查集来合并节点 1 int cmp(const int i,const int j) { 2 return w[i] < w[j];

AES算法简介

AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES-192或者AE-256. 2.明文密钥组织方式 3.一些相关的的术语定义和表示 • 状态(State):密码运算的中间结果称为状态. • State的表示:状态用以字节为基本构成元素的矩阵阵列来表示,该阵列有4行,列数记为Nb. Nb=分组长度(bits)÷ 32.Nb可以取的值为4,对应的分组长

Java哈希散列算法简介 - MD5 &amp; SHA-512

Java哈希散列算法简介 - MD5 & SHA-512 在日常的开发工作中,我们常常会碰到这样的一个场景:我们需要有一种可靠的行之有效的方法来检验跟判断数据在传输过程当中的完整性.最常见的一种情况就是当我们传输文件的时候,由于网络故障或者其他的一些因素,可能会出现我们下载下来的文件不完整,这给我们日常的开发和维护带了一些难题:另外的一个较为常用的场景就是:有没有一种行之有效的方法让我们可以很方便的判断服务器上的文件是不是有最新的数据更新,比如我们现在的移动Hybird App开发,我们经常会发

MD5算法 简介

MD5(单向散列算法)的全称是Message-Digest Algorithm 5(信息-摘要算法),经MD2.MD3和MD4发展而来.MD5算法的使用不需要支付任何版权费用. MD5功能 l 输入任意长度的信息,经过处理,输出为128位的信息(数字指纹): l 不同的输入得到的不同的结果(唯一性): l 根据128位的输出结果不可能反推出输入的信息(不可逆): MD5用途 1.防止被篡改: 1)比如发送一个电子文档,发送前,我先得到MD5的输出结果a.然后在对方收到电子文档后,对方也得到一个M

算法简介及算法分析

算法简介及算法分析 算法简介 算法的定义: 算法是对特定问题求解步骤的一种描述,是指令的有限序列.(所以说只要满足上述条件,即使很简单的一个循环也是算法) 算法具备5个特征: 输入 输出 有穷性 确定性 可行性 什么是好算法: 正确性 鲁棒性 简单性 抽象分级 高效性 算法分析: 高效性是评价一个算法是否是好算法的重要标准,那么我们怎么判断算法是否高效呢?有的人说,把算法用程序语言实现一下,再输入多个测试数据实际检测运行速度(时间频度)和空间开销就好了呗!这种事后统计的方法并不能准确检测,它牵扯

Java 理论与实践: 非阻塞算法简介--转载

在不只一个线程访问一个互斥的变量时,所有线程都必须使用同步,否则就可能会发生一些非常糟糕的事情.Java 语言中主要的同步手段就是synchronized 关键字(也称为内在锁),它强制实行互斥,确保执行 synchronized 块的线程的动作,能够被后来执行受相同锁保护的synchronized 块的其他线程看到.在使用得当的时候,内在锁可以让程序做到线程安全,但是在使用锁定保护短的代码路径,而且线程频繁地争用锁的时候,锁定可能成为相当繁重的操作. 在 “流行的原子” 一文中,我们研究了原子