QR分解与最小二乘

主要内容:

1、QR分解定义

2、QR分解求法

3、QR分解与最小二乘

4、Matlab实现

 

一、QR分解

R分解法是三种将矩阵分解的方式之一。这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积。

QR 分解经常用来解线性最小二乘法问题。QR 分解也是特定特征值算法QR算法的基础。

定义:

实数矩阵 A 的 QR 分解是把 A 分解为Q、R,这里的 Q正交矩阵(意味着 QTQ = I)而 R 是上三角矩阵。类似的,我们可以定义 A 的 QL, RQ 和 LQ 分解。

更一般的说,我们可以因数分解复数 m×n 矩阵(有着 mn)为 m×n 酉矩阵(在 Q?Q = I 的意义上)和n×n 上三角矩阵的乘积。

如果 A非奇异的,则这个因数分解为是唯一,当我们要求 R 的对角是正数的时候。

二、QR分解的求法

QR分解的实际计算有很多方法,例如Givens旋转Householder变换,以及Gram-Schmidt正交化等等。每一种方法都有其优点和不足。

三、QR分解与最小二乘

最小二乘:

          对给定数据点{(Xi,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ,使误差的平方和E^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。

          最小二乘的矩阵形式:Ax=b,其中A为nxk的矩阵,x为kx1的列向量,b为nx1的列向量。如果n>k(方程的个数大于未知量的个数),这个方程系统称为Over Determined System,如果n<k(方程的个数小于未知量的个数),这个系统就是Under Determined System。

最小二乘与QR分解:

          正常来看,这个方程是没有解的,但在数值计算领域,我们通常是计算 min ||Ax-b||,解出其中的x。比较直观的做法是求解A‘Ax=A‘b,但通常比较低效。其中一种常见的解法是对A进行QR分解(A=QR),其中Q是nxk正交矩阵(Orthonormal Matrix),R是kxk上三角矩阵(Upper Triangular Matrix),然后min ||Ax-b|| = min ||QRx-b|| = min ||Rx-Q‘b||,用MATLAB命令x=R\(Q‘*b)可解得x。

最小二乘的Matlab实现:

① 一次函数使用polyfit(x,y,1)

②多项式函数使用 polyfit(x,y,n),n为次数

拟合曲线

x=[0.5,1.0,1.5,2.0,2.5,3.0],

y=[1.75,2.45,3.81,4.80,7.00,8.60]。

解:MATLAB程序如下:

x=[0.5,1.0,1.5,2.0,2.5,3.0];

y=[1.75,2.45,3.81,4.80,7.00,8.60];

p=polyfit(x,y,2)

x1=0.5:0.5:3.0;

y1=polyval(p,x1);

plot(x,y,‘*r‘,x1,y1,‘-b‘)

计算结果为:

p =0.5614 0.8287 1.1560

即所得多项式为y=0.5614x^2+0.8287x+1.15560

③非线性函数使用 lsqcurvefit(fun,x0,x,y)

四、QR分解的Matlab实现

[Q,R]=qr(A) or [Q,R]=qr(A,0)    (二者的区别自行help或doc一下)
其中Q代表正规正交矩阵,
而R代表上三角形矩阵。

此外,原矩阵A不必为正方矩阵; 如果矩阵A大小为n*m,则矩阵Q大小为n*m,矩阵R大小为m*m。

五、参考文献:

http://blog.sina.com.cn/s/blog_64367bb90100ikji.html

http://www.360doc.com/content/13/1015/09/12712639_321543226.shtml

 

 

 

QR分解与最小二乘

时间: 2024-10-06 21:24:04

QR分解与最小二乘的相关文章

QR分解与最小二乘(转载自AndyJee)

转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积. QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础. 定义: 实数矩阵 A 的 QR 分解是把 A 分解为Q.R,这里的 Q 是正交矩阵(意味着 QTQ = I)

机器学习中的矩阵方法03:QR 分解

1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其中, Q 是一个标准正交方阵, R 是上三角矩阵. 2. QR 分解的求解 QR 分解的实际计算有很多方法,例如 Givens 旋转.Householder 变换,以及 Gram-Schmidt 正交化等等.每一种方法都有其优点和不足.上一篇博客介绍了 Givens 旋转和 Householder

QR分解

从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在于将矩阵转化成正交矩阵和上三角矩阵的乘积,对应的分解公式是A=Q*R.正交矩阵有很多良好的性质,比如矩阵的逆和矩阵的转置相同,任意一个向量和正交矩阵的乘积不改变向量的2范数等等.QR分解可以用于求解线性方程组,线性拟合.更重要的是QR分解是QR算法的基础,可以用于各种特征值问题,所以QR分集的应用非常广泛.

8.QR分解的python实现

import numpy as np import math #直到主对角线上的值变化很小时,结束循环 def is_same(a,b): print(a) print(b) n = len(a) for i in range(n): if(math.fabs(a[i]-b[i]) > 1e-9): return False return True if __name__ == '__main__': a = np.array([0.65,0.28,0.02,0.15,0.67,0.18,0.1

数值分析--矩阵QR分解的三种方法

QR分解法是目前求一般矩阵全部特征值的最有效并广泛应用的方法,一般矩阵先经过正交相似变化成为Hessenberg矩阵,然后再应用QR方法求特征值和特征向量.它是将矩阵分解成一个正规正交矩阵Q与上三角形矩阵R,所以称为QR分解法,与此正规正交矩阵的通用符号Q有关.

Householder 变换与 QR 分解

import random import copy EPS = 0.00001 class MatrixException( Exception ): pass class Matrix( object ): def __init__( self, rows, cols, values_list = None, description = None ): self.rows = rows self.cols = cols self.matrix = [ [ 0 for c in xrange(

矩阵的QR分解(三种方法)

Gram-Schmidt正交化 假设原来的矩阵为[a,b],a,b为线性无关的二维向量,下面我们通过Gram-Schmidt正交化使得矩阵A为标准正交矩阵: 假设正交化后的矩阵为Q=[A,B],我们可以令A=a,那么我们的目的根据AB=I来求B,B可以表示为b向量与b向量在a上的投影的误差向量: $$B=b-Pb=b-\frac{A^Tb}{A^TA}A$$

矩阵分解---QR正交分解,LU分解

相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x'Ax>0,则称矩阵A 是正定的.正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0.相对应的,半正定矩阵的行列式必然 ≥ 0. QR分解 矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵的乘积的形式. 任意实数方阵A,都能被分解为A=QR.这里的Q为正交单位阵,即

机器学习中的矩阵方法04:SVD 分解

机器学习中的矩阵方法04:SVD 分解 前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出更有意思的信息.奇异值分解( SVD, Singular Value Decomposition ) 在计算矩阵的伪逆( pseudoinverse ),最小二乘法最优解,矩阵近似,确定矩阵的列向量空间,秩以及线性系统的解集空间都有应用. 1. SVD 的形式