POJ 1410 Intersection --几何,线段相交

题意: 给一条线段,和一个矩形,问线段是否与矩形相交或在矩形内。

解法: 判断是否在矩形内,如果不在,判断与四条边是否相交即可。这题让我发现自己的线段相交函数有错误的地方,原来我写的线段相交函数就是单纯做了两次跨立实验,在下图这种情况是错误的:

这样的话线段与右边界的两次跨立实验(叉积<=0)都会通过,但是并不相交。

所以要加快速排斥。

还有就是这题题目说给出的不一定是左上角,右下角依次的顺序。所以干脆重新自己定义左上角,右下角。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define eps 1e-8
using namespace std;
#define N 100017

struct Point{
    double x,y;
    Point(double x=0, double y=0):x(x),y(y) {}
    void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
    Point c;
    double r;
    Circle(){}
    Circle(Point c,double r):c(c),r(r) {}
    Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
    void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
struct Line{
    Point p;
    Vector v;
    double ang;
    Line(){}
    Line(Point p, Vector v):p(p),v(v) { ang = atan2(v.y,v.x); }
    Point point(double t) { return Point(p.x + t*v.x, p.y + t*v.y); }
    bool operator < (const Line &L)const { return ang < L.ang; }
};
int dcmp(double x) {
    if(x < -eps) return -1;
    if(x > eps) return 1;
    return 0;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); }

bool SegmentIntersection(Point A,Point B,Point C,Point D) {
    return max(A.x,B.x) >= min(C.x,D.x) &&
           max(C.x,D.x) >= min(A.x,B.x) &&
           max(A.y,B.y) >= min(C.y,D.y) &&
           max(C.y,D.y) >= min(A.y,B.y) &&
           dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= 0 &&
           dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) <= 0;
}

//data segment
struct node{
    Point P[2];
}line[206];
//data ends

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        double x1,y1,x2,y2;
        double xleft,ytop,xright,ybottom;
        Point A,B;
        A.input(), B.input();
        scanf("%lf%lf%lf%lf",&xleft,&ytop,&xright,&ybottom);
        Point P1,P2,P3,P4;
        double XL = min(xleft,xright);
        double XR = max(xleft,xright);
        double YB = min(ybottom,ytop);
        double YT = max(ybottom,ytop);
        xleft = XL, xright = XR, ybottom = YB, ytop = YT;
        P1 = Point(xleft,ytop);
        P2 = Point(xleft,ybottom);
        P3 = Point(xright,ytop);
        P4 = Point(xright,ybottom);
        int flag = 0;
        if(SegmentIntersection(A,B,P1,P3) || SegmentIntersection(A,B,P1,P2) || SegmentIntersection(A,B,P2,P4) || SegmentIntersection(A,B,P3,P4))
            flag = 1;
        if(dcmp(A.x-xleft) >= 0 && dcmp(A.x-xright) <= 0 && dcmp(A.y-ytop) <= 0 && dcmp(A.y-ybottom) >= 0 && dcmp(B.x-xleft) >= 0 && dcmp(B.x-xright) <= 0 && dcmp(B.y-ytop) <= 0 && dcmp(B.y-ybottom) >= 0)
            flag = 1;
        if(flag) puts("T");
        else     puts("F");
    }
    return 0;
}

时间: 2024-10-10 15:10:57

POJ 1410 Intersection --几何,线段相交的相关文章

POJ 1410 Intersection(线段相交&amp;&amp;判断点在矩形内&amp;&amp;坑爹)

Intersection 大意:给你一条线段,给你一个矩形,问是否相交. 相交:线段完全在矩形内部算相交:线段与矩形任意一条边不规范相交算相交. 思路:知道具体的相交规则之后题其实是不难的,但是还有个坑点就是题目里明明说给的是矩形左上角跟右下角的点,但实际上不是,需要重新判断一下...真坑. 1 struct Point 2 { 3 double x, y; 4 } A, B, C, D; 5 struct Line 6 { 7 Point a, b; 8 } L; 9 10 int n; 11

POJ 1410 Intersection(线段相交&amp;amp;&amp;amp;推断点在矩形内&amp;amp;&amp;amp;坑爹)

Intersection 大意:给你一条线段,给你一个矩形,问是否相交. 相交:线段全然在矩形内部算相交:线段与矩形随意一条边不规范相交算相交. 思路:知道详细的相交规则之后题事实上是不难的,可是还有个坑点就是题目里明明说给的是矩形左上角跟右下角的点,但实际上不是,须要又一次推断一下...真坑. struct Point { double x, y; } A, B, C, D; struct Line { Point a, b; } L; int n; double xmult(Point p1

poj 1410 Intersection (判断线段与矩形相交 判线段相交)

题目链接 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12040   Accepted: 3125 Description You are to write a program that has to decide whether a given line segment intersects a given rectangle. An example: line: start point:

POJ 1410 Intersection (线段和矩形相交)

题目: Description You are to write a program that has to decide whether a given line segment intersects a given rectangle. An example: line: start point: (4,9) end point: (11,2) rectangle: left-top: (1,5) right-bottom: (7,1)  Figure 1: Line segment doe

POJ 1410 Intersection(计算几何)

题目链接:id=1410">Intersection 推断线段与矩形的关系.与矩形相交打印T,否则打印F. 坑题,精度. . .. 思路就是,先推断 线段是否在矩形里面,再推断线段和两条对角线的关系,利用叉积模板就可以 測试数据有个坑,就是 左上角的坐标并不一定比右下角的小. ..这根本不符合题意嘛 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring&

poj 3304 直线与线段相交

Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12161   Accepted: 3847 Description Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments

简单几何(线段相交) POJ 1410 Intersection

题目传送门 题意:一个矩形和一条线段,问是否有相交 分析:考虑各种情况.坑点:给出的矩形的两个端点是无序的,还有线段完全在矩形内也算相交 /************************************************ * Author :Running_Time * Created Time :2015/10/27 星期二 13:17:49 * File Name :POJ_1410.cpp ******************************************

简单几何(线段相交+最短路) POJ 1556 The Doors

题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijkstra跑最短路.好题! /************************************************ * Author :Running_Time * Created Time :2015/10/24 星期六 09:48:49 * File Name :POJ_1556.cpp

简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes

题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字母序输出,第二次WA是因为忘记多边形的最后一条线段,还好找到了,没有坚持的话就不会AC了. /************************************************ * Author :Running_Time * Created Time :2015/10/31 星期六