深入浅出 Java Concurrency (7): 锁机制 part 2 AQS[转]

在理解J.U.C原理以及锁机制之前,我们来介绍J.U.C框架最核心也是最复杂的一个基础类:java.util.concurrent.locks.AbstractQueuedSynchronizer

AQS

AbstractQueuedSynchronizer,简称AQS,是J.U.C最复杂的一个类,导致绝大多数讲解并发原理或者实战的时候都不会提到此类。但是虚心的作者愿意借助自己有限的能力和精力来探讨一二(参考资源中也有一些作者做了部分的分析。)。

首先从理论知识开始,在了解了相关原理后会针对源码进行一些分析,最后加上一些实战来描述。

上面的继承体系中,AbstractQueuedSynchronizer是CountDownLatch/FutureTask/ReentrantLock/RenntrantReadWriteLock/Semaphore的基础,因此AbstractQueuedSynchronizer是Lock/Executor实现的前提。公平锁、不公平锁、Condition、CountDownLatch、Semaphore等放到后面的篇幅中说明。

完整的设计原理可以参考Doug Lea的论文 The java.util.concurrent Synchronizer Framework ,这里做一些简要的分析。

基本的思想是表现为一个同步器,支持下面两个操作:

获取锁:首先判断当前状态是否允许获取锁,如果是就获取锁,否则就阻塞操作或者获取失败,也就是说如果是独占锁就可能阻塞,如果是共享锁就可能失败。另外如果是阻塞线程,那么线程就需要进入阻塞队列。当状态位允许获取锁时就修改状态,并且如果进了队列就从队列中移除。

while(synchronization state does not allow acquire){

enqueue current thread if not already queued;

possibly block current thread;

}

dequeue current thread if it was queued;

释放锁:这个过程就是修改状态位,如果有线程因为状态位阻塞的话就唤醒队列中的一个或者更多线程。

update synchronization state;

if(state may permit a blocked thread to acquire)

unlock one or more queued threads;

要支持上面两个操作就必须有下面的条件:

  • 原子性操作同步器的状态位
  • 阻塞和唤醒线程
  • 一个有序的队列

目标明确,要解决的问题也清晰了,那么剩下的就是解决上面三个问题。

状态位的原子操作

这里使用一个32位的整数来描述状态位,前面章节的原子操作的理论知识整好派上用场,在这里依然使用CAS操作来解决这个问题。事实上这里还有一个64位版本的同步器(AbstractQueuedLongSynchronizer),这里暂且不谈。

阻塞和唤醒线程

标准的JAVA API里面是无法挂起(阻塞)一个线程,然后在将来某个时刻再唤醒它的。JDK 1.0的API里面有Thread.suspend和Thread.resume,并且一直延续了下来。但是这些都是过时的API,而且也是不推荐的做法。

在JDK 5.0以后利用JNI在LockSupport类中实现了此特性。

LockSupport.park()
LockSupport.park(Object)
LockSupport.parkNanos(Object, long)
LockSupport.parkNanos(long)
LockSupport.parkUntil(Object, long)
LockSupport.parkUntil(long)
LockSupport.unpark(Thread)

上面的API中park()是在当前线程中调用,导致线程阻塞,带参数的Object是挂起的对象,这样监视的时候就能够知道此线程是因为什么资源而阻塞的。由于park()立即返回,所以通常情况下需要在循环中去检测竞争资源来决定是否进行下一次阻塞。park()返回的原因有三:

  • 其他某个线程调用将当前线程作为目标调用 unpark
  • 其他某个线程中断当前线程;
  • 该调用不合逻辑地(即毫无理由地)返回。

其实第三条就决定了需要循环检测了,类似于通常写的while(checkCondition()){Thread.sleep(time);}类似的功能。

有序队列

在AQS中采用CHL列表来解决有序的队列的问题。

AQS采用的CHL模型采用下面的算法完成FIFO的入队列和出队列过程。

对于入队列(enqueue):采用CAS操作,每次比较尾结点是否一致,然后插入的到尾结点中。

do {

pred = tail;

}while ( !compareAndSet(pred,tail,node) );

对于出队列(dequeue):由于每一个节点也缓存了一个状态,决定是否出队列,因此当不满足条件时就需要自旋等待,一旦满足条件就将头结点设置为下一个节点。

while (pred.status != RELEASED) ;

head  = node;

实际上这里自旋等待也是使用LockSupport.park()来实现的。

AQS里面有三个核心字段:

private volatile int state;

private transient volatile Node head;

private transient volatile Node tail;

其中state描述的有多少个线程取得了锁,对于互斥锁来说state<=1。head/tail加上CAS操作就构成了一个CHL的FIFO队列。下面是Node节点的属性。

volatile int waitStatus; 节点的等待状态,一个节点可能位于以下几种状态:

  • CANCELLED = 1: 节点操作因为超时或者对应的线程被interrupt。节点不应该留在此状态,一旦达到此状态将从CHL队列中踢出。
  • SIGNAL = -1: 节点的继任节点是(或者将要成为)BLOCKED状态(例如通过LockSupport.park()操作),因此一个节点一旦被释放(解锁)或者取消就需要唤醒(LockSupport.unpack())它的继任节点。
  • CONDITION = -2:表明节点对应的线程因为不满足一个条件(Condition)而被阻塞。
  • 0: 正常状态,新生的非CONDITION节点都是此状态。
  • 非负值标识节点不需要被通知(唤醒)。

volatile Node prev;此节点的前一个节点。节点的waitStatus依赖于前一个节点的状态。

volatile Node next;此节点的后一个节点。后一个节点是否被唤醒(uppark())依赖于当前节点是否被释放。

volatile Thread thread;节点绑定的线程。

Node nextWaiter;下一个等待条件(Condition)的节点,由于Condition是独占模式,因此这里有一个简单的队列来描述Condition上的线程节点。

AQS 在J.U.C里面是一个非常核心的工具,而且也非常复杂,里面考虑到了非常多的逻辑实现,所以在后面的章节中总是不断的尝试介绍AQS的特性和实现。

这一个小节主要介绍了一些理论背景和相关的数据结构,在下一个小节中将根据以上知识来了解Lock.lock/unlock是如何实现的。

参考资料:

(1)ReentrantLock代码剖析之ReentrantLock.lock ReentrantLock代码剖析之ReentrantLock.unlock ReentrantLock代码剖析之ReentrantLock.lockInterruptibly

(2)java多线程--java.util.concurrent.locks.AbstractQueuedSynchronizer解析(只包含多线程同步示例)

(3)处理 InterruptedException

(4)AbstractQueuedSynchronizer源码解析之ReentrantLock(一)  AbstractQueuedSynchronizer源码解析之ReentrantLock(二)

(5)The java.util.concurrent Synchronizer Framework

时间: 2024-10-12 07:32:22

深入浅出 Java Concurrency (7): 锁机制 part 2 AQS[转]的相关文章

深入浅出 Java Concurrency (9): 锁机制 part 4[转]

本小节介绍锁释放Lock.unlock(). Release/TryRelease unlock操作实际上就调用了AQS的release操作,释放持有的锁. public final boolean release(int arg) {    if (tryRelease(arg)) {        Node h = head;        if (h != null && h.waitStatus != 0)            unparkSuccessor(h);       

深入浅出 Java Concurrency (15): 锁机制 part 10 锁的一些其它问题[转]

主要谈谈锁的性能以及其它一些理论知识,内容主要的出处是<Java Concurrency in Practice>,结合自己的理解和实际应用对锁机制进行一个小小的总结. 首先需要强调的一点是:所有锁(包括内置锁和高级锁)都是有性能消耗的,也就是说在高并发的情况下,由于锁机制带来的上下文切换.资源同步等消耗是非常可观的.在某些极端情况下,线程在锁上的消耗可能比线程本身的消耗还要多.所以如果可能的话,在任何情况下都尽量少用锁,如果不可避免那么采用非阻塞算法是一个不错的解决方案,但是却也不是绝对的.

深入浅出 Java Concurrency (6): 锁机制 part 1[转]

前面的章节主要谈谈原子操作,至于与原子操作一些相关的问题或者说陷阱就放到最后的总结篇来整体说明.从这一章开始花少量的篇幅谈谈锁机制. 上一个章节中谈到了锁机制,并且针对于原子操作谈了一些相关的概念和设计思想.接下来的文章中,尽可能的深入研究锁机制,并且理解里面的原理和实际应用场合. 尽管synchronized在语法上已经足够简单了,在JDK 5之前只能借助此实现,但是由于是独占锁,性能却不高,因此JDK 5以后就开始借助于JNI来完成更高级的锁实现. JDK 5中的锁是接口java.util.

深入浅出 Java Concurrency(二)—锁机制(一)

前面的章节主要谈谈原子操作,至于与原子操作一些相关的问题或者说陷阱就放到最后的总结篇来整体说明.从这一章开始花少量的篇幅谈谈锁机制. 上一个章节 中谈到了锁机制,并且针对于原子操作谈了一些相关的概念和设计思想.接下来的文章中,尽可能的深入研究锁机制,并且理解里面的原理和实际应用场合. 尽管synchronized在语法上已经足够简单了,在JDK 5之前只能借助此实现,但是由于是独占锁,性能却不高,因此JDK 5以后就开始借助于JNI来完成更高级的锁实现. JDK 5中的锁是接口java.util

深入浅出 Java Concurrency (12): 锁机制 part 7 信号量(Semaphore)[转]

Semaphore 是一个计数信号量.从概念上讲,信号量维护了一个许可集.如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可.每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者.但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动. 说白了,Semaphore是一个计数器,在计数器不为0的时候对线程就放行,一旦达到0,那么所有请求资源的新线程都会被阻塞,包括增加请求到许可的线程,也就是说Semaphore不是可重

深入浅出 Java Concurrency (13): 锁机制 part 8 读写锁 (ReentrantReadWriteLock) (1)[转]

从这一节开始介绍锁里面的最后一个工具:读写锁(ReadWriteLock). ReentrantLock 实现了标准的互斥操作,也就是一次只能有一个线程持有锁,也即所谓独占锁的概念.前面的章节中一直在强调这个特点.显然这个特点在一定程度上面减低了吞吐量,实际上独占锁是一种保守的锁策略,在这种情况下任何“读/读”,“写/读”,“写/写”操作都不能同时发生.但是同样需要强调的一个概念是,锁是有一定的开销的,当并发比较大的时候,锁的开销就比较客观了.所以如果可能的话就尽量少用锁,非要用锁的话就尝试看能

深入浅出 Java Concurrency (8): 锁机制 part 3[转]

接上篇,这篇从Lock.lock/unlock开始.特别说明在没有特殊情况下所有程序.API.文档都是基于JDK 6.0的. public void java.util.concurrent.locks.ReentrantLock.lock() 获取锁. 如果该锁没有被另一个线程保持,则获取该锁并立即返回,将锁的保持计数设置为 1. 如果当前线程已经保持该锁,则将保持计数加 1,并且该方法立即返回. 如果该锁被另一个线程保持,则出于线程调度的目的,禁用当前线程,并且在获得锁之前,该线程将一直处于

深入浅出 Java Concurrency (11): 锁机制 part 6 CyclicBarrier[转]

如果说CountDownLatch是一次性的,那么CyclicBarrier正好可以循环使用.它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point).所谓屏障点就是一组任务执行完毕的时刻. 清单1 一个使用CyclicBarrier的例子 package xylz.study.concurrency.lock; import java.util.concurrent.BrokenBarrierException;import java.util.concur

深入浅出 Java Concurrency (10): 锁机制 part 5 闭锁 (CountDownLatch)[转]

此小节介绍几个与锁有关的有用工具. 闭锁(Latch) 闭锁(Latch):一种同步方法,可以延迟线程的进度直到线程到达某个终点状态.通俗的讲就是,一个闭锁相当于一扇大门,在大门打开之前所有线程都被阻断,一旦大门打开所有线程都将通过,但是一旦大门打开,所有线程都通过了,那么这个闭锁的状态就失效了,门的状态也就不能变了,只能是打开状态.也就是说闭锁的状态是一次性的,它确保在闭锁打开之前所有特定的活动都需要在闭锁打开之后才能完成. CountDownLatch是JDK 5+里面闭锁的一个实现,允许一