java cpu缓存

众所周知, CPU是计算机的大脑, 它负责执行程序的指令; 内存负责存数据, 包括程序自身数据. 同样大家都知道, 内存比CPU慢很多. 其实在30年前, CPU的频率和内存总线的频率在同一个级别, 访问内存只比访问CPU寄存器慢一点儿. 由于内存的发展都到技术及成本的限制, 现在获取内存中的一条数据大概需要200多个CPU周期(CPU cycles), 而CPU寄存器一般情况下1个CPU周期就够了.

CPU缓存
网页浏览器为了加快速度,会在本机存缓存以前浏览过的数据; 传统数据库或NoSQL数据库为了加速查询, 常在内存设置一个缓存, 减少对磁盘(慢)的IO. 同样内存与CPU的速度相差太远, 于是CPU设计者们就给CPU加上了缓存(CPU Cache). 如果你需要对同一批数据操作很多次, 那么把数据放至离CPU更近的缓存, 会给程序带来很大的速度提升. 例如, 做一个循环计数, 把计数变量放到缓存里,就不用每次循环都往内存存取数据了. 下面是CPU Cache的简单示意图.

随着多核的发展, CPU Cache分成了三个级别: L1, L2, L3. 级别越小越接近CPU, 所以速度也更快, 同时也代表着容量越小. L1是最接近CPU的, 它容量最小, 例如32K, 速度最快,每个核上都有一个L1 Cache(准确地说每个核上有两个L1 Cache, 一个存数据 L1d Cache, 一个存指令 L1i Cache). L2 Cache 更大一些,例如256K, 速度要慢一些, 一般情况下每个核上都有一个独立的L2 Cache; L3 Cache是三级缓存中最大的一级,例如12MB,同时也是最慢的一级, 在同一个CPU插槽之间的核共享一个L3 Cache.

从CPU到 大约需要的CPU周期 大约需要的时间(单位ns)
寄存器 1 cycle  
L1 Cache ~3-4 cycles ~0.5-1 ns
L2 Cache ~10-20 cycles ~3-7 ns
L3 Cache ~40-45 cycles ~15 ns
跨槽传输   ~20 ns
内存 ~120-240 cycles ~60-120ns

感兴趣的同学可以在Linux下面用cat /proc/cpuinfo, 或Ubuntu下lscpu看看自己机器的缓存情况, 更细的可以通过以下命令看看:

$ cat /sys/devices/system/cpu/cpu0/cache/index0/size
32K
$ cat /sys/devices/system/cpu/cpu0/cache/index0/type
Data
$ cat /sys/devices/system/cpu/cpu0/cache/index0/level
1
$ cat /sys/devices/system/cpu/cpu3/cache/index3/level
3

就像数据库cache一样, 获取数据时首先会在最快的cache中找数据, 如果没有命中(Cache miss) 则往下一级找, 直到三层Cache都找不到,那只要向内存要数据了. 一次次地未命中,代表取数据消耗的时间越长.

缓存行(Cache line)
为了高效地存取缓存, 不是简单随意地将单条数据写入缓存的.  缓存是由缓存行组成的, 典型的一行是64字节. 读者可以通过下面的shell命令,查看cherency_line_size就知道知道机器的缓存行是多大.

$ cat /sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size
 64

CPU存取缓存都是按行为最小单位操作的. 在这儿我将不提及缓存的associativity问题, 将问题简化一些. 一个Java long型占8字节, 所以从一条缓存行上你可以获取到8个long型变量. 所以如果你访问一个long型数组, 当有一个long被加载到cache中, 你将无消耗地加载了另外7个. 所以你可以非常快地遍历数组.

实验及分析
我们在Java编程时, 如果不注意CPU Cache, 那么将导致程序效率低下. 例如以下程序, 有一个二维long型数组, 在我的32位笔记本上运行时的内存分布如图:


32位机器中的java的数组对象头共占16字节(详情见 链接), 加上62个long型一行long数据一共占512字节. 所以这个二维数据是顺序排列的.

 1 public class L1CacheMiss {
 2  private static final int RUNS = 10;
 3  private static final int DIMENSION_1 = 1024 * 1024;
 4  private static final int DIMENSION_2 = 62;
 5
 6 private static long[][] longs;
 7
 8 public static void main(String[] args) throws Exception {
 9  Thread.sleep(10000);
10  longs = new long[DIMENSION_1][];
11  for (int i = 0; i < DIMENSION_1; i++) {
12  longs[i] = new long[DIMENSION_2];
13  for (int j = 0; j < DIMENSION_2; j++) {
14  longs[i][j] = 0L;
15  }
16  }
17  System.out.println("starting....");
18
19 final long start = System.nanoTime();
20  long sum = 0L;
21  for (int r = 0; r < RUNS; r++) {
22 // for (int j = 0; j < DIMENSION_2; j++) {
23 // for (int i = 0; i < DIMENSION_1; i++) {
24 // sum += longs[i][j];
25 // }
26 // }
27
28 for (int i = 0; i < DIMENSION_1; i++) {
29  for (int j = 0; j < DIMENSION_2; j++) {
30  sum += longs[i][j];
31  }
32  }
33  }
34  System.out.println("duration = " + (System.nanoTime() - start));
35  }
36 }

编译后运行,结果如下

$ java L1CacheMiss
starting....
duration = 1460583903

然后我们将22-26行的注释取消, 将28-32行注释, 编译后再次运行,结果是不是比我们预想得还糟?

$ java L1CacheMiss
starting....
duration = 22332686898

前面只花了1.4秒的程序, 只做一行的对调要运行22秒. 从上节我们可以知道在加载longs[i][j]时, longs[i][j+1]很可能也会被加载至cache中, 所以立即访问longs[i][j+1]将会命中L1 Cache, 而如果你访问longs[i+1][j]情况就不一样了, 这时候很可能会产生 cache miss导致效率低下.
下面我们用perf来验证一下,先将快的程序跑一下.

$ perf stat -e L1-dcache-load-misses java L1CacheMiss
starting....
duration = 1463011588

Performance counter stats for ‘java L1CacheMiss‘:

164,625,965 L1-dcache-load-misses

13.273572184 seconds time elapsed

一共164,625,965次L1 cache miss, 再看看慢的程序

$ perf stat -e L1-dcache-load-misses java L1CacheMiss
starting....
duration = 21095062165

Performance counter stats for ‘java L1CacheMiss‘:

1,421,402,322 L1-dcache-load-misses

32.894789436 seconds time elapsed

这回产生了1,421,402,322次 L1-dcache-load-misses, 所以慢多了.

以上我只是示例了在L1 Cache满了之后才会发生的cache miss. 其实cache miss的原因有下面三种:
1. 第一次访问数据, 在cache中根本不存在这条数据, 所以cache miss, 可以通过prefetch解决.
2. cache冲突, 需要通过补齐来解决.
3. 就是我示例的这种, cache满, 一般情况下我们需要减少操作的数据大小, 尽量按数据的物理顺序访问数据.
具体的信息可以参考这篇论文.

时间: 2024-10-13 01:03:47

java cpu缓存的相关文章

写Java也得了解CPU缓存

CPU,一般认为写C/C++的才需要了解,写高级语言的(Java/C#/pathon...)并不需要了解那么底层的东西.我一开始也是这么想的,但直到碰到LMAX的Disruptor,以及马丁的博文,才发现写Java的,更加不能忽视CPU.经过一段时间的阅读,希望总结一下自己的阅读后的感悟.本文主要谈谈CPU缓存对Java编程的影响,不涉及具体CPU缓存的机制和实现. 现代CPU的缓存结构一般分三层,L1,L2和L3.如下图所示: 级别越小的缓存,越接近CPU, 意味着速度越快且容量越少. L1是

从Java视角理解CPU缓存(CPU Cache)

从Java视角理解系统结构连载, 关注我的微博(链接)了解最新动态众所周知, CPU是计算机的大脑, 它负责执行程序的指令; 内存负责存数据, 包括程序自身数据. 同样大家都知道, 内存比CPU慢很多. 其实在30年前, CPU的频率和内存总线的频率在同一个级别, 访问内存只比访问CPU寄存器慢一点儿. 由于内存的发展都到技术及成本的限制, 现在获取内存中的一条数据大概需要200多个CPU周期(CPU cycles), 而CPU寄存器一般情况下1个CPU周期就够了. CPU缓存 网页浏览器为了加

基于JVM原理JMM模型和CPU缓存模型深入理解Java并发编程

许多以Java多线程开发为主题的技术书籍,都会把对Java虚拟机和Java内存模型的讲解,作为讲授Java并发编程开发的主要内容,有的还深入到计算机系统的内存.CPU.缓存等予以说明.实际上,在实际的Java开发工作中,仅仅了解并发编程的创建.启动.管理和通信等基本知识还是不够的.一方面,如果要开发出高效.安全的并发程序,就必须深入Java内存模型和Java虚拟机的工作原理,从底层了解并发编程的实质:更进一步地,在现今大数据的时代,要开发出高并发.高可用.考可靠的分布式应用及各种中间件,更需要深

CPU缓存刷新的误解

即使是资深的技术人员,我经常听到他们谈论某些操作是如何导致一个CPU缓存的刷新.看来这是关于CPU缓存如何工作和缓存子系统如何与执行核心交互的一个常见误区.本文将致力于解释CPU缓存的功能以及执行程序指令的CPU核心如何与缓存交互.我将以最新的Intel x86 CPU为例进行说明,其他CPU也使用相似技术以达到相同目的. 绝大部分常见的现代系统都被设计成在多处理器上共享内存.共享内存的系统都有一个单独的内存资源,它会被两个或者更多的独立CPU核心同时访问.核心到主存的延迟变化范围很大,大约在1

CPU缓存机制 并发编程的基础

CPU多核缓存架构 1.多线程环境下存在的问题 在多处理器系统中,每个处理器都有自己的高速缓存,而它们又共享同一主内存(RAM).基于高速缓存的存储交互很好地解决了处理器与内存的速度矛盾,但是也引入了新的问题:缓存一致性(CacheCoherence). 若有两个线程 T1 和 T2 都去计算 x + 1的值(x初始值为1),T1线程的由 CPU1去处理, T2 线程由CPU2去处理:CPU1和CPU2的高速缓存中的副本都是 x = 1,经过CPU加1操作后,再次放入的CPU1.CPU2的高速缓

5个强大的Java分布式缓存框架推荐

在开发中大型Java软件项目时,很多Java架构师都会遇到数据库读写瓶颈,如果你在系统架构时并没有将缓存策略考虑进去,或者并没有选择更优的缓存策略,那么到时候重构起来将会是一个噩梦.本文主要是分享了5个常用的Java分布式缓存框架,这些缓存框架支持多台服务器的缓存读写功能,可以让你的缓存系统更容易扩展. 1.Ehcache – Java分布式缓存框架 Ehcache是一个Java实现的开源分布式缓存框架,EhCache 可以有效地减轻数据库的负载,可以让数据保存在不同服务器的内存中,在需要数据的

Java分布式缓存框架

http://developer.51cto.com/art/201411/457423.htm 在开发中大型Java软件项目时,很多Java架构师都会遇到数据库读写瓶颈,如果你在系统架构时并没有将缓存策略考虑进去,或者并没有选择更优的缓存策略,那么到时候重构起来将会是一个噩梦.本文主要是分享了5个常用的Java分布式缓存框架,这些缓存框架支持多台服务器的缓存读写功能,可以让你的缓存系统更容易扩展. 1.Ehcache – Java分布式缓存框架 Ehcache是一个Java实现的开源分布式缓存

Java MemCached 缓存实现

首先创建MemCached 缓存管理类,此代码测试需要添加 java_memcached-release_2.6.3.jar,commons-pool-1.5.6.jar,slf4j-api-1.6.1.jar,slf4j-simple-1.6.1.jar 这几个jar包 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

cpu缓存原理

概述 今天来跟大家分享一下cpu缓存相关的东西,在了解cpu缓存的工作原理时,举一反三,以后在学习一些缓存技术的实现的时候就会更加容易一些,现在那么多缓存技术,原理大多都大同小异. 基本描述 我们都知道,CPU运算速度远大于内存读写速度,这样会使CPU花费很长时间等待数据到来或把数据写入内存.在计算机系统中,CPU高速缓存(以下简称缓存)是用于减少处理器访问内存所需平均时间的部件.在金字塔式存储体系中它位于自顶向下的第二层,仅次于CPU寄存器.其容量远小于内存,但速度却可以接近处理器的频率.数据