09 信息化领域热词分类分析及解释 第三步 将清洗完毕的热词添加百度百科解释

功能要求为:1,数据采集,定期从网络中爬取信息领域的相关热词

      2,数据清洗:对热词信息进行数据清洗,并采用自动分类技术生成自动分类计数生成信息领域热词目录。

      3,热词解释:针对每个热词名词自动添加中文解释(参照百度百科或维基百科)

      4,热词引用:并对近期引用热词的文章或新闻进行标记,生成超链接目录,用户可以点击访问;

      5,数据可视化展示:① 用字符云或热词图进行可视化展示;② 用关系图标识热词之间的紧密程度。
      6,数据报告:可将所有热词目录和名词解释生成 WORD 版报告形式导出。

本次完成第三步的部分功能,针对每个热词名词自动添加中文解释,这里我选择的是使用百度百科来解释热词名词。

具体思路是:读取爬取的热词文件,按行读取,读取完毕后根据获得的line来确定搜索的关键词,将关键词变量结合百度百科的固定url生成需要的url地址

再运用xpath获取相应的位置的解释,输出即可。需要注意的是,要运用xpath的获取一个标签下的所有文本的知识点。

代码如下:

import requests
from lxml import etree

def climing(line):
    line1=line.replace(‘\n‘,‘‘)
    print(line1)
    url = "https://baike.baidu.com/item/"+str(line1)
    print(url)
    head = {
        ‘User-Agent‘: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36‘,
        ‘cookie‘:‘BAIDUID=AB4524A16BFAFC491C2D9D7D4CAE56D0:FG=1; BIDUPSID=AB4524A16BFAFC491C2D9D7D4CAE56D0; PSTM=1563684388; MCITY=-253%3A; BDUSS=jZnQkVhbnBIZkNuZXdYd21jMG9VcjdoanlRfmFaTjJ-T1lKVTVYREkxVWp2V2RlSVFBQUFBJCQAAAAAAAAAAAEAAACTSbM~Z3JlYXTL3tGpwOTS9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMwQF4jMEBed; pcrightad9384=showed; H_PS_PSSID=1454_21120; delPer=0; PSINO=3; BDORZ=B490B5EBF6F3CD402E515D22BCDA1598; __yjsv5_shitong=1.0_7_a3331e3bd00d7cbd253c9e353f581eb2494f_300_1581332649909_58.243.250.219_d03e4deb; yjs_js_security_passport=069e28a2b81f7392e2f39969d08f61c07150cc18_1581332656_js; Hm_lvt_55b574651fcae74b0a9f1cf9c8d7c93a=1580800784,1581160267,1581268654,1581333414; BK_SEARCHLOG=%7B%22key%22%3A%5B%22%E7%96%AB%E6%83%85%22%2C%22%E6%95%B0%E6%8D%AE%22%2C%22%E9%9D%9E%E6%AD%A3%E5%BC%8F%E6%B2%9F%E9%80%9A%22%2C%22mapper%22%5D%7D; Hm_lpvt_55b574651fcae74b0a9f1cf9c8d7c93a=1581334123‘
    }
    r = requests.get(url,headers = head)
    print(r.status_code)
    html = r.content.decode("utf-8")
    #print(html)
    html1 = etree.HTML(html)
    #print(html1)
    content1 = html1.xpath(‘//div[@class="lemma-summary"]‘)
    #print(content1[0])
    if len(content1)==0:
        #custom_dot  para-list list-paddingleft-1
        content1 =html1.xpath(‘string(//ul[@class="custom_dot  para-list list-paddingleft-1"])‘)
        print(content1)
        if len(content1)==0:
            pring(‘未找到解释‘)
            content1 = ‘未找到解释‘
    else:
        content2 =content1[0].xpath (‘string(.)‘).replace(‘&nbsp‘,‘‘).replace(‘\n‘,‘‘)

        print(content2)
if __name__ == ‘__main__‘:
    for line in open("words.txt",encoding=‘utf-8‘):
        #print(line, end = ‘‘)
        climing(line)

  

运行截图(部分):

原文地址:https://www.cnblogs.com/xcl666/p/12293342.html

时间: 2024-11-08 23:22:55

09 信息化领域热词分类分析及解释 第三步 将清洗完毕的热词添加百度百科解释的相关文章

11 信息化领域热词分类分析及解释 第五步按目录爬取热词

功能要求为:1,数据采集,定期从网络中爬取信息领域的相关热词 2,数据清洗:对热词信息进行数据清洗,并采用自动分类技术生成自动分类计数生成信息领域热词目录. 3,热词解释:针对每个热词名词自动添加中文解释(参照百度百科或维基百科) 4,热词引用:并对近期引用热词的文章或新闻进行标记,生成超链接目录,用户可以点击访问: 5,数据可视化展示:① 用字符云或热词图进行可视化展示:② 用关系图标识热词之间的紧密程度. 6,数据报告:可将所有热词目录和名词解释生成 WORD 版报告形式导出. 这次完成了按

08 信息化领域热词分类分析及解释 第二步 将爬取的数据使用jieba分词处理并清洗

直接上代码: import jieba import pandas as pd import re from collections import Counter if __name__=='__main__': filehandle = open("news.txt", "r",encoding='utf-8'); mystr = filehandle.read() seg_list = jieba.cut(mystr) # 默认是精确模式 print(seg_l

Python 爬取 热词并进行分类数据分析-[热词分类+目录生成+关系演示+报告生成]

日期:2020.02.04 博客期:143 星期二   [本博客的代码如若要使用,请在下方评论区留言,之后再用(就是跟我说一声)] 如下图,我已经解决的需求是标黄的部分,剩余需求就只有 热词分类.目录生成.热词关系图展示.数据报告导出 四部分了,这些需求是最紧要完成的,呼~撸起袖子加油干!   1.热词分类 2.热词目录生成 3.热词关系图展示 4.Word模板报告撰写 5.分析格式,制作自动生成报告的 Java 程序 [今日中午12:00更新进度] 原文地址:https://www.cnblo

用词云图分析一带一路峰会哪3个词说的最多

前言 最近几日关注度最高的新闻莫过于一带一路峰会相关的消息,会议结束后,一带一路峰会联合公告已经公布出来了.本文通过词云分析,了解本次公告以及习大大在峰会开幕式上主要都讲了哪些关键内容. 1 一带一路峰会联合公告词云图 5月17日公布的一带一路峰会联合公告的词云分析结果图,如下: 词云图上,字体越大表示该词语在文件中出现的次数越多. 从上图可以看出,出现次数最多的3个词语为“合作”.“我们”以及“加强” ,基本可以看出,本次峰会是一个新的起点,今后需要做的事情还很多,需要各方务实合作,哈. 2

【转】class卸载、热替换和Tomcat的热部署的分析

这篇文章主要是分析Tomcat中关于热部署和JSP更新替换的原理,在此之前先介绍class的热替换和class的卸载的原理. 一 class的热替换ClassLoader中重要的方法 loadClass ClassLoader.loadClass(...) 是ClassLoader的入口点.当一个类没有指明用什么加载器加载的时候,JVM默认采用AppClassLoader加载器加载没有加载过的class,调用的方法的入口就是loadClass(...).如果一个class被自定义的ClassLo

(4.2.32)各大热补丁方案分析和比较

选自: [腾讯bugly干货分享]微信Android热补丁实践演进之路 各大热补丁方案分析和比较 继插件化后,热补丁技术在2015年开始爆发,目前已经是非常热门的Android开发技术.其中比较著名的有淘宝的Dexposed.支付宝的AndFix以及QZone的classloader超级热补丁方案. 为什么需要热补丁 热补丁:让应用能够在无需重新安装的情况实现更新,帮助应用快速建立动态修复能力 从上面的定义来看,热补丁节省Android大量应用市场发布的时间.同时用户也无需重新安装,只要上线就能

数学建模:2.监督学习--分类分析- KNN最邻近分类算法

1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分类问题是用于将事物打上一个标签,通常结果为离散值.例如判断一副图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上. 本文主要讲基本的分类方法 ----- KNN最邻近分类算法  KNN最邻近分类算法 ,简称KNN,最简单的机器学习算法之一. 核心逻辑:在距离空间里,如果一个样本的最接近的K个邻

【python数据挖掘】使用词云分析来分析豆瓣影评数据

概述: 制作词云的步骤: 1.从文件中读取数据 2.根据数据追加在一个字符串里面,然后用jieba分词器将评论分开 3.设置WordCloud词云参数 4.保存最后的结果 数据:使用爬取的豆瓣影评数据 第一步:引入依赖库 # 1.表格库 import csv # 2.jieba分词器 import jieba # 3.算法运算库 import numpy # 4.图像库 from PIL import Image # 5.词云库 from wordcloud import WordCloud 第

【原】Android热更新开源项目Tinker源码解析系列之二:资源文件热更新

上一篇文章介绍了Dex文件的热更新流程,本文将会分析Tinker中对资源文件的热更新流程. 同Dex,资源文件的热更新同样包括三个部分:资源补丁生成,资源补丁合成及资源补丁加载. 本系列将从以下三个方面对Tinker进行源码解析: Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Android热更新开源项目Tinker源码解析系列之二:资源热更新 Android热更新开源项目Tinker源码解析系类之三:so热更新 转载请标明本文来源:http://www.cnblogs