单变量线性回归

单变量线性回归

单变量线性回归指的是只有一个自变量;

线性回归是一种有监督学习,解决的是自变量和因变量之间的关系;

回归指的是因变量是连续性的,而如果因变量是离散型的,则是分类问题。

监督学习算法的工作方式可以用如下这张图表示:

将训练集喂给机器学习算法,输出一个假设函数 h,然后新输入一个自变 x 到假设函数内,然后输出一个因变量 y 值。

以房价预测为列,特征为房子的大小,因变量是房价。那么对于一个新的房子的大小,我们如何根据历史的数据来预测出来该房子的价格呢?

?θ(x)= θ0+θ 1,因为只含有一个特征/输入变量,因此这样的问题叫作单变量线性回归问题。

梯度下降

描述:对赋值,使得按梯度下降最快方向进行,一直迭代下去,最终得到局部最小值。其中是a学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方 向向下迈出的步子有多大。

a 是学习率,控制着梯度下降算法移动的大小,如果 a过小,那么梯度下降算法就一点点地移动,那么可能需要很长的时间才能够找到全局最小值;如果 a 过大,那么又有可能会导致梯度下降算法找不到最小值,甚至导致代价函数无法收敛。

梯度下降算法的步骤:

1.先预设一个初始的参数值;

2.然后一直不断地改变这个参数值,来减小代价函数;

3.直到最后代价函数达到一个最小值或者局部最优解。

原文地址:https://www.cnblogs.com/xfbestgood/p/12367529.html

时间: 2024-11-09 06:01:57

单变量线性回归的相关文章

Ng第二课:单变量线性回归(Linear Regression with One Variable)

二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          

机器学习之单变量线性回归(Linear Regression with One Variable)

1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格.在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集: 我们来看这个数据集,如果你有一个朋友正想出售自己的房子,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱. 那么,你可以做的一件事就是构建一个模型,也许是条直线.从这个数据模型上来看,也许你可以告诉你的朋友,他大概

机器学习入门——单变量线性回归

线性回归的概念,在高中数学书里就出现过. 给你一些样本点,如何找出一条直线,使得最逼近这些样本点. 给出一个例子:假设 x 是房子面积,y是房子价格,确定一条直线需要theta0和theta1. 给出x,我们就可以计算出房子的价格 h(x) = theta0+theta1*x 关键是如何计算出theta0和theta1,也就是如何找出这么一条直线呢? 在这里,引入一个概念,叫做cost function.m表示样本个数,也就是训练样本数目 这是一个square error,学过统计的应该经常见到

机器学习 Machine Learning(by Andrew Ng)----第二章 单变量线性回归(Linear Regression with One Variable)

第二章 单变量线性回归(Linear Regression with One Variable) <模型表示(Model Representation)>                                                             <代价函数(Cost Function)>                                                          <梯度下降(Gradient Descent)

二、单变量线性回归(Linear Regression with One Variable)

本笔记为吴恩达机器学习在线课程笔记,课程网址(https://www.coursera.org/learn/machine-learning/) 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对

Stanford公开课机器学习---2.单变量线性回归(Linear Regression with One Variable)

单变量线性回归(Linear Regression with One Variable) 2.1 模型表达(Model Representation) m 代表训练集中实例的数量 x 代表特征/输入变量 y 代表目标变量/输出变量 (x,y) 代表训练集中的实例 (x(i),y(i) ) 代表第 i 个观察实例 h 代表学习算法的解决方案或函数也称为假设(hypothesis) 单变量线性回归:只含有一个特征/输入变量 x hθ=θ0+θ1x 2.2 代价函数(Cost Function) 目标

Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对应的出售价格,绘制出了数据集:假如

Stanford机器学习Week 1—单变量线性回归

本篇讲述以下内容: 单变量线性回归 代价函数 梯度下降 单变量线性回归 回顾下上节,在回归问题中,我们给定输入变量,试图映射到连续预期结果函数上从而得到输出.单变量线性回归就是从一个输入值预测一个输出值.输入/输出的对应关系就是一个线性函数. 下面是一个根据房屋面积预测房屋价格的例子. 假设有一个数据集,我们称作训练集,数据集包括房屋面积和房屋价格数据. x:表示输入变量,也叫特征变量. y:表示输出变量,也叫目标变量. (xi,yi):表示一个识训练样本,训练集的一行.i 表示 第 i 个训练

机器学习 (一) 单变量线性回归 Linear Regression with One Variable

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang和 JerryLead 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable 1. 代价函数Cost Function 在单变量线性回归中,已知有一个训练集有一些关于x.y的数据(如×所示),当我们的预测值

斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x                 代表特征/输入变量 y                 代表目标变量/输出变量 (x,y)            代表训练集中的实例 (x(i),y(i)  )    代表第 i 个观察实例 h                代表学习算法的解决方案或函数