那些NB哄哄的负载均衡算法到底是什么样子的?

前言

在软件系统的架构设计中,对集群的负载均衡设计是作为高性能系统优化环节中必不可少的方案。负载均衡本质上是用于将用户流量进行均衡减压的,因此在互联网的大流量项目中,其重要性不言而喻。

一、什么是负载均衡?

早期的互联网应用,由于用户流量比较小,业务逻辑也比较简单,往往一个单服务器就能满足负载需求。随着现在互联网的流量越来越大,稍微好一点的系统,访问量就非常大了,并且系统功能也越来越复杂,那么单台服务器就算将性能优化得再好,也不能支撑这么大用户量的访问压力了,这个时候就需要使用多台机器,设计高性能的集群来应对。

那么,多台服务器是如何去均衡流量、如何组成高性能的集群的呢?

此时就需要请出 「负载均衡器」 入场了。

负载均衡(Load Balancer)是指把用户访问的流量,通过「负载均衡器」,根据某种转发的策略,均匀的分发到后端多台服务器上,后端的服务器可以独立的响应和处理请求,从而实现分散负载的效果。负载均衡技术提高了系统的服务能力,增强了应用的可用性。

(可以按照图中去理解,图片来源网络)

二、负载均衡方案有几种?

目前市面上最常见的负载均衡技术方案主要有三种:

基于DNS负载均衡

基于硬件负载均衡

基于软件负载均衡

三种方案各有优劣,DNS负载均衡可以实现在地域上的流量均衡,硬件负载均衡主要用于大型服务器集群中的负载需求,而软件负载均衡大多是基于机器层面的流量均衡。在实际场景中,这三种是可以组合在一起使用。下面来详细讲讲:

基于DNS负载均衡

基于DNS来做负载均衡其实是一种最简单的实现方案,通过在DNS服务器上做一个简单配置即可。

其原理就是当用户访问域名的时候,会先向DNS服务器去解析域名对应的IP地址,这个时候我们可以让DNS服务器根据不同地理位置的用户返回不同的IP。比如南方的用户就返回我们在广州业务服务器的IP,北方的用户来访问的话,我就返回北京业务服务器所在的IP。

在这个模式下,用户就相当于实现了按照「就近原则」将请求分流了,既减轻了单个集群的负载压力,也提升了用户的访问速度。

使用DNS做负载均衡的方案,天然的优势就是配置简单,实现成本非常低,无需额外的开发和维护工作。

但是也有一个明显的缺点是:当配置修改后,生效不及时。这个是由于DNS的特性导致的,DNS一般会有多级缓存,所以当我们修改了DNS配置之后,由于缓存的原因,会导致IP变更不及时,从而影响负载均衡的效果。

另外,使用DNS做负载均衡的话,大多是基于地域或者干脆直接做IP轮询,没有更高级的路由策略,所以这也是DNS方案的局限所在。

基于硬件负载均衡

硬件的负载均衡那就比较牛逼了,比如大名鼎鼎的 F5 Network Big-IP,也就是我们常说的 F5,它是一个网络设备,你可以简单的理解成类似于网络交换机的东西,完全通过硬件来抗压力,性能是非常的好,每秒能处理的请求数达到百万级,即 几百万/秒 的负载,当然价格也就非常非常贵了,十几万到上百万人民币都有。

因为这类设备一般用在大型互联网公司的流量入口最前端,以及政府、国企等不缺钱企业会去使用。一般的中小公司是不舍得用的。

采用 F5 这类硬件做负载均衡的话,主要就是省心省事,买一台就搞定,性能强大,一般的业务不在话下。而且在负载均衡的算法方面还支持很多灵活的策略,同时还具有一些防火墙等安全功能。但是缺点也很明显,一个字:贵。

基于软件负载均衡

软件负载均衡是指使用软件的方式来分发和均衡流量。软件负载均衡,分为7层协议 和 4层协议。

网络协议有七层,基于第四层传输层来做流量分发的方案称为4层负载均衡,例如 LVS,而基于第七层应用层来做流量分发的称为7层负载均衡,例如 Nginx。这两种在性能和灵活性上是有些区别的。

基于4层的负载均衡性能要高一些,一般能达到 几十万/秒 的处理量,而基于7层的负载均衡处理量一般只在 几万/秒 。

基于软件的负载均衡的特点也很明显,便宜。在正常的服务器上部署即可,无需额外采购,就是投入一点技术去优化优化即可,因此这种方式是互联网公司中用得最多的一种方式。

三、常用的均衡算法有哪些?

上面讲完了常见的负载均衡技术方案,那么接下来咱们看一下,在实际方案应用中,一般可以使用哪些均衡算法?

轮询策略

负载度策略

响应策略

哈希策略

下面来分别介绍一下这几种均衡算法/策略的特点:

1.轮询策略

轮询策略其实很好理解,就是当用户请求来了之后,「负载均衡器」将请求轮流的转发到后端不同的业务服务器上。这个策略在DNS方案中用的比较多,无需关注后端服务的状态,只要有请求,就往后端轮流转发,非常的简单、实用。

在实际应用中,轮询也会有多种方式,有按顺序轮询的、有随机轮询的、还有按照权重来轮询的。前两种比较好理解,第三种按照权重来轮询,是指给每台后端服务设定一个权重值,比如性能高的服务器权重高一些,性能低的服务器给的权重低一些,这样设置的话,分配流量的时候,给权重高的更多流量,可以充分的发挥出后端机器的性能。

2.负载度策略

负载度策略是指当「负载均衡器」往后端转发流量的时候,会先去评估后端每台服务器的负载压力情况,对于压力比较大的后端服务器转发的请求就少一些,对于压力比较小的后端服务器可以多转发一些请求给它。

这种方式就充分的结合了后端服务器的运行状态,来动态的分配流量了,比轮询的方式更为科学一些。

但是这种方式也带来了一些弊端,因为需要动态的评估后端服务器的负载压力,那这个「负载均衡器」除了转发请求以外,还要做很多额外的工作,比如采集 连接数、请求数、CPU负载指标、IO负载指标等等,通过对这些指标进行计算和对比,判断出哪一台后端服务器的负载压力较大。

因此这种方式带来了效果优势的同时,也增加了「负载均衡器」的实现难度和维护成本。

3.响应策略

响应策略是指,当用户请求过来的时候,「负载均衡器」会优先将请求转发给当前时刻响应最快的后端服务器。

也就是说,不管后端服务器负载高不高,也不管配置如何,只要觉得这个服务器在当前时刻能最快的响应用户的请求,那么就优先把请求转发给它,这样的话,对于用户而言,体验也最好。

那「负载均衡器」是怎么知道哪一台后端服务在当前时刻响应能力最佳呢?

这就需要「负载均衡器」不停的去统计每一台后端服务器对请求的处理速度了,比如一分钟统计一次,生成一个后端服务器处理速度的排行榜。然后「负载均衡器」根据这个排行榜去转发服务。

那么这里的问题就是统计的成本了,不停的做这些统计运算本身也会消耗一些性能,同时也会增加「负载均衡器」的实现难度和维护成本。

4.哈希策略

Hash策略也比较好理解,就是将请求中的某个信息进行hash计算,然后根据后端服务器台数取模,得到一个值,算出相同值的请求就被转发到同一台后端服务器中。

常见的用法是对用户的IP或者ID进行这个策略,然后「负载均衡器」就能保证同一个IP来源或者同一个用户永远会被送到同一个后端服务器上了,一般用于处理缓存、会话等功能的时候特别好用。

总结

以上,就是实现高性能负载均衡的常见技术方案和策略了.

原文地址:http://blog.51cto.com/13732225/2175804

时间: 2024-10-09 18:28:00

那些NB哄哄的负载均衡算法到底是什么样子的?的相关文章

负载均衡算法概述

我们查询注册中心获得了某个服务的可用节点列表,我们需要从可用节点列表中选择一个发起调用,这就是负载均衡的所用了. 需要考虑两个因素,?个是要考虑调?的均匀性,也就是要让每个节点都接收到调?,发挥所有节点的作?,另?个是要考虑调?的性能,也就是哪个节点响应最快,优先调?哪个节点. 常见的负载均衡算法 随机算法(伪随机) 随机算法,顾名思义就是从可?的服务节点中,随机挑选?个节点来访问. 在实现时,随机算法通常是通过?成?个随机数来实现,?如服务有10个节点,那么就每?次?成?个1-10之间的随机数

Citrix Netscaler负载均衡算法

众所周知,作为新一代应用交付产品的Citrix Netscaler具有业内领先的数据控制.应用交付的能力,然而作为根本内容之一的ADC功能,如果不具备强大的.多元化的均衡算法是不可能适应如此众多的应用场景,更无法做到好的应用交付产品.因此我们在此讨论一下比较常用的负载均衡算法就很有必要. 目前最新版本的Netscaler支持17种均衡算法,目前先讨论最常用的12种 1.轮询算法(Round Robin) 当NetScaler 使用轮询的负载均衡算法时,它会将来自客户端的请求轮流分配给后台中的服务

F5负载均衡算法及基本原理

原文:Intro to Load Balancing for Developers – The Algorithms 转载:http://blog.gesha.net/archives/205/ posted on Tuesday, March 31, 2009 11:02 PM Random: This load balancing method randomly distributes load across the servers available, picking one via ra

负载均衡算法及手段

负载均衡器 可以是专用设备,也可以是在通用服务器上运行的应用程序. 分散请求到拥有相同内容或提供相同服务的服务器. 专用设备一般只有以太网接口,可以说是多层交换机的一种. 负载均衡器一般会被分配虚拟IP地址,所有来自客户端的请求都是针对虚拟IP地址完成的.负载均衡器通过负载均衡算法将来自客户端的请求转发到服务器的实际IP地址上. 负载均衡算法 private Map<String,Integer> serverMap = new HashMap<String,Integer>(){

几种简单的负载均衡算法及其Java代码实现

什么是负载均衡 负载均衡,英文名称为Load Balance,指由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助.通过某种负载分担技术,将外部发送来的请求均匀分配到对称结构中的某一台服务器上,而接收到请求的服务器独立地回应客户的请求.负载均衡能够平均分配客户请求到服务器阵列,借此提供快速获取重要数据,解决大量并发访问服务问题,这种集群技术可以用最少的投资获得接近于大型主机的性能. 负载均衡分为软件负载均衡和硬件负载均衡,前者的代

说一说负载均衡算法

    负载均衡算法可以分为两类:静态负载均衡算法,基于服务器的容量,就是高配置的服务器比低配置的服务器分配更多的请求:动态负载均衡算法根据服务器的状况,比如通过监控可以得到平均响应时间,或者CPU占用率,内存占用率按照某种方式进行计算,作为权重值 静态负载均衡算法 随机(Random):利用随机数生成算法选取一个服务器,然后把连接发送给他.虽然许多负载产品都支持该算法,但是它的有效性一直受到质疑,除非把服务器的可运行时间看的很重. 轮询(Round Robin):按顺序把每个新的连接请求分配给

集群负载均衡算法原理

最近打算往互联网方向发展,研究了下集群的负载均衡.其实早就应该去了解学习了.如有理解不到位的地方,还望各大神指出. 负载均衡算法是集群在调度时,选择具体调度和分发方式的逻辑. 目前流行和常用的算法有:轮询算法,Hash算法,Session,最小连接数,最大空闲等. 1.轮询算法: 实现方式:把每一次的用户请求,按顺序循环分配给集群内部的一台服务器.优点是算法简洁,无状态. 2.权重轮询算法 由于服务器的处理能力不同,可以再给服务器加权.也就是权重轮询算法. 3.Hash算法 一般就是将请求中的某

负载均衡算法类型

负载均衡算法类型 随机 (Random)-- 随机分发 轮询(Round Robin) -- 将请求依次顺序循环地分发给服务器,从1到N然后重新开始.此种均衡算法适合于服务器组中的所有服务器都有相同的软硬件配置并且平均服务请求相对均衡的情况. 权重(Weighted Round Robin)-- 根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求..此种均衡算法能确保高性能的服务器得到更多的使用率,避免低性能的服务器负载过重. 动态比率(Dynamic Rou

常见负载均衡算法

一.概要 随着系统日益庞大.逻辑业务越来越复杂,系统架构由原来的单一系统到垂直系统,发展到现在的分布式系统.分布式系统中,可以做到公共业务模块的高可用,高容错性,高扩展性,然而,当系统越来越复杂时,需要考虑的东西自然也越来越多,要求也越来越高,比如服务路由.负载均衡等.此文将针对负载均衡算法进行讲解,不涉及具体的实现. 二.负载均衡算法 在分布式系统中,多台服务器同时提供一个服务,并统一到服务配置中心进行管理,如图1-1. 图1-1