二叉树和哈希表的优缺点对比与选择

二叉树(binary tree)和哈希表(hash table)都是很基本的数据结构,但是我们要怎么从两者之间进行选择呢?他们的不同是什么?优缺点分别是什么?

回答这个问题不是一两句话可以说清楚的,原因是在不同的情况下,选择的依据肯定也不同。首先来回顾一下这两个数据结构:

哈希表使用hash function来对输入的数据分配index到哈希表对应的槽中。假设有一个哈希表的size是100,而我们输入的数据是从0~99,我们要把输入数据储存到哈希表中。理论上来说,该哈希表插入和查找操作的时间复杂度都是O(1)。

二叉树遵循右子树大于根节点,左子树小于根节点的原则进行数据的插入和保存。如果这个树的平衡的,那么,对于每个元素的插入和查找操作的时间复杂度是O(log(n)),n是树的节点个数,log(n)通常是树的深度。当然,对于不平衡的情况,那就需要更复杂的数据结构的树(红黑树等)进行处理。

上文似乎得出结论哈希表要好于二叉树,但是it is not always the case。哈希表有以下几个突出的缺点:

  1. 当更多的数插入时,哈希表冲突的可能性就更大。对于冲突,哈希表通常有两种解决方案:第一种是线性探索,相当于在冲突的槽后建立一个单链表,这种情况下,插入和查找以及删除操作消耗的时间会达到O(n),且该哈希表需要更多的空间进行储存。第二种方法是开放寻址,他不需要更多的空间,但是在最坏的情况下(例如所有输入数据都被map到了一个index上)的时间复杂度也会达到O(n)。
  2. 所以,在决定建立哈希表之前,最好可以估计输入的数据的size。否则,resize哈希表的过程将会是一个非常消耗时间的过程。例如,如果现在你的哈希表的长度是100,但是现在有第101个数要插入。这时,不仅哈希表的长度可能要扩展到150,且扩展之后所有的数都需要重新rehash。
  3. 哈希表中的元素是没有被排序的。然而,有些情况下,我们希望储存的数据是有序的。

另一方面,我们讨论二叉树:

  1. 二叉树不会有冲突(collision),这意味着我们能够保证二叉树的插入和查找操作一直都是O(log(n))的时间复杂度。
  2. 二叉树的空间占用跟输入的输入数据一致。所以我们不需要为二叉树预先分配固定的空间。所以,你也不需要预先知道输入数据的size。
  3. 所有的元素在树中是排序好的。

Summary

如果你预先知道输入数据的大小,而且有足够的空间储存哈希表,且不需要对数据进行排序,那么哈希表总是好的。因为哈希表在插入,查找和删除操作中只需要常数时间。

另一方面,如果数据是持续的加入,你预先不知道数据的大小,那么二叉树是一个折中的选择。

Reference:
Hash table vs Binary search tree

原文地址:https://www.cnblogs.com/bjwu/p/9823531.html

时间: 2024-10-12 16:34:10

二叉树和哈希表的优缺点对比与选择的相关文章

哈希(2) - 垂直打印一棵二叉树(使用哈希表实现)

垂直打印给定的一棵二叉树.下面的例子演示了垂直遍历的顺序. 1 / 2 3 / \ / 4 5 6 7 \ 8 9 对这棵树的垂直遍历结果为: 4 2 1 5 6 3 8 7 9 在二叉树系列中,已经讨论过了一种O(n2)的方案.在本篇中,将讨论一种基于哈希表的更优的方法.首先在水平方向上检测所有节点到root的距离.如果两个node拥有相同的水平距离(Horizontal Distance,简称HD), 则它们在相同的垂直线上.root自身的HD为0,右侧的node的HD递增,即+1,而左侧的

哈希函数和哈希表综述 (转)

哈希表及哈希函数研究综述 摘要 随着信息化水平的不断提高,数据已经取代计算成为了信息计算的中心,对存储的需求不断提高信息量呈现爆炸式增长趋势,存储已经成为急需提高的瓶颈.哈希表作为海量信息存储的有效方式,本文详细介绍了哈希表的设计.冲突解决方案以及动态哈希表.另外针对哈希函数在相似性匹配.图片检索.分布式缓存和密码学等领域的应用做了简短得介绍 哈希经过这么多年的发展,出现了大量高性能的哈希函数和哈希表.本文通过介绍各种不同的哈希函数的设计原理以及不同的哈希表实现,旨在帮助读者在实际应用中,根据问

源码:Java集合源码之:哈希表(二)

要想知道一个元素是否在数组或链表中,只能从前向后挨个对比,无论是数组还是链表,其对数据的查询表现都比较无力.在的二叉排序树中,还会将数据排序以进行二分查找,将时间复杂度从O(n)降低到O(lg n). 出现这个问题的根源在于,我们没有办法直接根据一个元素找到它存储的位置. 那有没有办法消除这个对比的过程呢?哈希表就是解决查询问题的一种方案. 什么是哈希表与Hash函数 通俗来讲,哈希表就是通过关键字来获取数据的一种数据结构,它通过把关键字映射为表中的位置来获取元素,这种映射主要是使用Hash函数

Nginx 哈希表结构 ngx_hash_t

概述 关于哈希表的基本知识在前面的文章<数据结构-哈希表>已作介绍.哈希表结合了数组和链表的特点,使其寻址.插入以及删除操作更加方便.哈希表的过程是将关键字通过某种哈希函数映射到相应的哈希表位置,即对应的哈希值所在哈希表的位置.但是会出现多个关键字映射相同位置的情况导致冲突问题,为了解决这种情况,哈希表使用两个可选择的方法:拉链法 和 开放寻址法. Nginx 的哈希表中使用开放寻址来解决冲突问题,为了处理字符串,Nginx 还实现了支持通配符操作的相关函数,下面对 Nginx 中哈希表的源码

Java数据结构和算法(十三)——哈希表

Hash表也称散列表,也有直接译作哈希表,Hash表是一种根据关键字值(key - value)而直接进行访问的数据结构.它基于数组,通过把关键字映射到数组的某个下标来加快查找速度,但是又和数组.链表.树等数据结构不同,在这些数据结构中查找某个关键字,通常要遍历整个数据结构,也就是O(N)的时间级,但是对于哈希表来说,只是O(1)的时间级. 注意,这里有个重要的问题就是如何把关键字转换为数组的下标,这个转换的函数称为哈希函数(也称散列函数),转换的过程称为哈希化. 1.哈希函数的引入 大家都用过

《Java数据结构和算法》- 哈希表

Q: 如何快速地存取员工的信息? A: 假设现在要写一个程序,存取一个公司的员工记录,这个小公司大约有1000个员工,每个员工记录需要1024个字节的存储空间,因此整个数据库的大小约为1MB.一般的计算机内存都可以满足. 为了尽可能地存取每个员工的记录,使用工号从1(公司创业者)到1000(最近雇佣的工人).将工号作为关键字(事实上,用其他作为关键字完全没有必要).即使员工离职不在公司,他们的记录也是要保存在数据库中以供参考,在这种情况下需要使用什么数据结构呢? A: 一种可能使用数组,每个员工

红黑树和哈希表的对比

什么是Hash Hash,也可以称为"散列",就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值.这是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出(也就是多对一的关系). 哈希表的构造 在所有的线性数据结构中,数组的定位速度最快,因为它可通过数组下标直接定位到相应的数组空间,就不需要一个个查找.而哈希表就是利用数组这个能够快速定位数据的结构解决以上的问题的. "数组可以通过下标直接定位到相应的空间"

数组/链表/哈希表/树结构的优缺点

数组: 优点: 1. 数组的主要优点是根据下标值访问效率会很高 2.但是如果希望根据元素来查找对应的位置? 3.比较好的方法是先对数组排序,再进行二分查找 缺点: 需要先对数组排序,生成有序数组,才能提高查找效率 数组在插入和删除数据时,需要有大量的位移操作(插入中间或者首部时),效率很低 链表: 优点: 1.链表的插入和删除操作效率都很高 缺点: 查找效率低,需要从头依次查找链表的每一项 即使插入和删除效率高,但是如果插入和删除中间位置,还是要重头找到对应的数据 哈希表: 优点: 插入/查询/

深入Java基础(四)--哈希表(1)HashMap应用及源码详解

继续深入Java基础系列.今天是研究下哈希表,毕竟我们很多应用层的查找存储框架都是哈希作为它的根数据结构进行封装的嘛. 本系列: (1)深入Java基础(一)--基本数据类型及其包装类 (2)深入Java基础(二)--字符串家族 (3)深入Java基础(三)–集合(1)集合父类以及父接口源码及理解 (4)深入Java基础(三)–集合(2)ArrayList和其继承树源码解析以及其注意事项 文章结构:(1)哈希概述及HashMap应用:(2)HashMap源码分析:(3)再次总结关键点 一.哈希概