How Computers Boot Up.计算机的引导过程

原文标题:How Computers Boot Up

原文地址:http://duartes.org/gustavo/blog/

[注:本人水平有限,只好挑一些国外高手的精彩文章翻译一下。一来自己复习,二来与大家分享。]

前一篇文章介绍了Intel计算机的主板与内存映射,从而为本文设定了一个系统引导阶段的场景。引导(Booting)是一个复杂的,充满技巧的,涉及多个阶段,又十分有趣的过程。下图列出了此过程的概要:

引导过程概要

当 你按下计算机的电源键后(现在别按!),机器就开始运转了。一旦主板上电,它就会初始化自身的固件(firmware)——芯片组和其他零零碎碎的东西 ——并尝试启动CPU。如果此时出了什么问题(比如CPU坏了或根本没装),那么很可能出现的情况是电脑没有任何动静,除了风扇在转。一些主板会在CPU 故障或缺失时发出鸣音提示,但以我的经验,此时大多数机器都会处于僵死状态。一些USB或其他设备也可能导致机器启动时僵死。对于那些以前工作正常,突然 出现这种症状的电脑,一个可能的解决办法是拔除所有不必要的设备。你也可以一次只断开一个设备,从而发现哪个是罪魁祸首。

如果一切正常,CPU就开始运行了。在一个多处理器或多核处理器的系统中,会有一个CPU被动态的指派为引导处理器(bootstrap processor简写BSP),用于执行全部的BIOS和内核初始化代码。其余的处理器,此时被称为应用处理器(application processor简写AP),一直保持停机状态直到内核明确激活他们为止。虽然Intel CPU经历了很多年的发展,但他们一直保持着完全的向后兼容性,所以现代的CPU可以表现得跟原先1978年的Intel 8086完全一样。其实,当CPU上电后,它就是这么做的。在这个基本的上电过程中,处理器工作于实模式分页功能是无效的。此时的系统环境,就像古老的MS-DOS一样,只有1MB内存可以寻址,任何代码都可以读写任何地址的内存,这里没有保护或特权级的概念。

CPU上电后,大部分寄存器的都具有定义良好的初始值,包括指令指针寄存器(EIP),它记录了下一条即将被CPU执行的指令所在的内存地址。尽管此时的Intel CPU还只能寻址1MB的内存,但凭借一个奇特的技巧,一个隐藏的基地址(其实就是个偏移量)会与EIP相加,其结果指向第一条将被执行的指令所处的地址0xFFFFFFF0(长16字节,在4GB内存空间的尾部,远高于1MB)。这个特殊的地址叫做复位向量(reset vector),而且是现代Intel CPU的标准。

主板保证在复位向量处的指令是一个跳转,而且是跳转到BIOS执行入口点所在的内存映射地址。这个跳转会顺带清除那个隐藏的、上电时的基地址。感谢芯片组提供的内存映射功能,此时的内存地址存放着CPU初始化所需的真正内容。这些内容全部是从包含有BIOS的闪存映射过来的,而此时的RAM模块还只有随机的垃圾数据。下面的图例列出了相关的内存区域:

引导时的重要内存区域

随后,CPU开始执行BIOS的代码,初始化机器中的一些硬件。之后BIOS开始执行上电自检过程(POST),检测计算机中的各种组件。如果找不到一个可用的显卡,POST就会失败,导致BIOS进入停机状态并发出鸣音提示(因为此时无法在屏幕上输出提示信息)。如果显卡正常,那么电脑看起来就真的运转起来了:显示一个制造商定制的商标,开始内存自检,天使们大声的吹响号角。另有一些POST失败的情况,比如缺少键盘,会导致停机,屏幕上显示出错信息。其实POST即是检测又是初始化,还要枚举出所有PCI设备的资源——中断,内存范围,I/O端口。现代的BIOS会遵循高级配置与电源接口(ACPI)协议,创建一些用于描述设备的数据表,这些表格将来会被操作系统内核用到。

POST完毕后,BIOS就准备引导操作系统了,它必须存在于某个地方:硬盘,光驱,软盘等。BIOS搜索引导设备的实际顺序是用户可定制的。如果找不到合适的引导设备,BIOS会显示出错信息并停机,比如"Non-System Disk or Disk Error"没有系统盘或驱动器故障。一个坏了的硬盘可能导致此症状。幸运的是,在这篇文章中,BIOS成功的找到了一个可以正常引导的驱动器。

现在,BIOS会读取硬盘的第一个扇区(0扇区),内含512个字节。这些数据叫做主引导记录(Master Boot Record简称MBR)。一般说来,它包含两个极其重要的部分:一个是位于MBR开头的操作系统相关的引导程序,另一个是紧跟其后的磁盘分区表。BIOS 丝毫不关心这些事情:它只是简单的加载MBR的内容到内存地址0x7C00处,并跳转到此处开始执行,不管MBR里的代码是什么。

主引导记录

这段在MBR内的特殊代码可能是Windows 引导装载程序,Linux 引导装载程序(比如LILO或GRUB),甚至可能是病毒。与此不同,分区表则是标准化的:它是一个64字节的区块,包含4个16字节的记录项,描述磁盘是如何被分割的(所以你可以在一个磁盘上安装多个操作系统或拥有多个独立的卷)。传统上,Microsoft的MBR代码会查看分区表,找到一个(唯一的)标记为活动(active)的分区,加载那个分区的引导扇区(boot sector),并执行其中的代码。引导扇区是一个分区的第一个扇区,而不是整个磁盘的第一个扇区。如果此时出了什么问题,你可能会收到如下错误信息:"Invalid Partition Table"无效分区表或"Missing Operating System"操作系统缺失。这条信息不是来自BIOS的,而是由从磁盘加载的MBR程序所给出的。因此这些信息依赖于MBR的内容。

随着时间的推移,引导装载过程已经发展得越来越复杂,越来越灵活。Linux的引导装载程序Lilo和GRUB可以处理很多种类的操作系统,文件系统,以及引导配置信息。他们的MBR代码不再需要效仿上述"从活动分区来引导"的方法。但是从功能上讲,这个过程大致如下:

1、  MBR本身包含有第一阶段的引导装载程序。GRUB称之为阶段一。

2、  由于MBR很小,其中的代码仅仅用于从磁盘加载另一个含有额外的引导代码的扇区。此扇区可能是某个分区的引导扇区,但也可能是一个被硬编码到MBR中的扇区位置。

3、  MBR配合第2步所加载的代码去读取一个文件,其中包含了下一阶段所需的引导程序。这在GRUB中是"阶段二"引导程序,在Windows Server中是C:/NTLDR。如果第2步失败了,在Windows中你会收到错误信息,比如"NTLDR is missing"NTLDR缺失。阶段二的代码进一步读取一个引导配置文件(比如在GRUB中是grub.conf,在Windows中是boot.ini)。之后要么给用户显示一些引导选项,要么直接去引导系统。

4、  此时,引导装载程序需要启动操作系统核心。它必须拥有足够的关于文件系统的信息,以便从引导分区中读取内核。在Linux中,这意味着读取一个名字类似"vmlinuz-2.6.22-14-server"的含有内核镜像的文件,将之加载到内存并跳转去执行内核引导代码。在Windows Server 2003中,一部份内核启动代码是与内核镜像本身分离的,事实上是嵌入到了NTLDR当中。在完成一些初始化工作以后,NTDLR从"c:/Windows/System32/ntoskrnl.exe"文件加载内核镜像,就像GRUB所做的那样,跳转到内核的入口点去执行。

这里还有一个复杂的地方值得一提(这也是我说引导富于技巧性的原因)。当前Linux内核的镜像就算被压缩了,在实模式下,也没法塞进640KB的可用RAM里。我的vanilla Ubuntu内核压缩后有1.7MB。然而,引导装载程序必须运行于实模式,以便调用BIOS代码去读取磁盘,所以此时内核肯定是没法用的。解决之道是使用一种倍受推崇的"虚模式"。它并非一个真正的处理器运行模式(希望Intel的工程师允许我以此作乐),而是一个特殊技巧。程序不断的在实模式和保护模式之间切换,以便访问高于1MB的内存同时还能使用BIOS。如果你阅读了GRUB的源代码,你就会发现这些切换到处都是(看看stage2/目录下的程序,对real_to_prot 和 prot_to_real函数的调用)。在这个棘手的过程结束时,装载程序终于千方百计的把整个内核都塞到内存里了,但在这后,处理器仍保持在实模式运行。

至此,我们来到了从"引导装载"跳转到"早期的内核初始化"的时刻,就像第一张图中所指示的那样。在系统做完热身运动后,内核会展开并让系统开始运转。下一篇文章将带大家一步步深入Linux内核的初始化过程,读者还可以参考Linux Cross reference的资源。我没办法对Windows也这么做,但我会把要点指出来。

参考:

http://blog.csdn.net/drshenlei/article/details/4250306

原文地址:https://www.cnblogs.com/tcicy/p/10185327.html

时间: 2024-08-01 08:24:32

How Computers Boot Up.计算机的引导过程的相关文章

The Kernel Boot Process.内核引导过程

原文标题:The Kernel Boot Process 原文地址:http://duartes.org/gustavo/blog/ [注:本人水平有限,只好挑一些国外高手的精彩文章翻译一下.一来自己复习,二来与大家分享.] 上一篇文章解释了计算机的引导过程,正好讲到引导装载程序把系统内核镜像塞进内存,准备跳转到内核入口点去执行的时刻.作为引导启动系列文章的最后一篇,就让我们深入内核,去看看操作系统是怎么启动的吧.由于我习惯以事实为依据讨论问题,所以文中会出现大量的链接引用Linux 内核2.6

linux引导过程

首先申明一下,这儿的引导过程是比较简单的,并不涉及到kernel里面的详细引导步骤,希望对刚刚学习linux的朋友有帮助. 1.加电自检 这基本上是所有计算机开机都需要经过的步骤了,当计算机加电后它首先执行BIOS,BIOS对计算机硬件进行检测,当检测通过便完成了硬件的启动.当自检完成后BIOS按照设置的启动顺序寻找系统分区,并读入系统引导扇区,并将系统控制权交给引导程序. 2.mbr或gpt引导 mbr和gpt是什么在这儿就不做过多的介绍了,相信了解过计算机的朋友都知道.系统引导程序主要是把系

Linux 引导过程内幕

http://www.ibm.com/developerworks/cn/linux/l-linuxboot/ 早期时,启动一台计算机意味着要给计算机喂一条包含引导程序的纸带,或者手工使用前端面板地址/数据/控制开关来加载引导程序.尽管目前的计算机已经装备了很多工具来简化引导过程,但是这一切并没有对整个过程进行必要的简化. 让我们先从高级的视角来查看 Linux 引导过程,这样就可以看到整个过程的全貌了.然后将回顾一下在各个步骤到底发生了什么.在整个过程中,参考一下内核源代码可以帮助我们更好地了

Linux学习笔记:系统启动引导过程

Linux系统启动引导过程 最近发现自己在只是掌握上有几个比较硬的伤: 一.知识体系碎片,比如Linux,这学点那学点,结果没有成体系,串不起来: 二.记忆时间短暂,很多的内容学了就忘,最后的结果是遇见一个知识点就能想起来自己的确学过,但是现在记不起来了. 三.理解程度浅显,比如说今天要整理关于Linux引导的内容,之前大体是知道的,不能称之为理解,我认为在学着一个知识点的时候至少要能系统有条理地讲出来,而不是有个模模糊糊的大体认识. 个别名词解释 1.BIOS(Basic Input Outp

Linux系统启动引导过程和服务控制

刚入门的小伙伴们是不是还在迷惑到底系统从我们按下电源键的那一刻,是如何进行一步一步运行的,知道我们输入用户名和密码进入系统,来操作电脑,今天我们就来写一下开机的启动过程以及相关服务的控制. 一. 系统引导流程: 1 . 开机加电,BIOS对硬件加电自检 加电自检,检测硬件设备,这是因为BIOS中包含了CPU的相关信息.设备启动顺序信息.硬盘信息.内存信息.时钟信息.PnP特性等等 2 . 检查启动顺序,从硬盘引导,读取MBR(446字节) 硬盘上第0磁道第一个扇区被称为MBR,也就是Master

linux内核启动引导过程

linux内核(uImage格式镜像,uImage = zImage_压缩的内核镜像 + 0x40字节大小的uboot格式信息头)的启动过程大体可以分为三个阶段: 第一:内核的自解压过程(汇编+C语言实现) 主要由.arch/arm/boot/compressed对zImage完成解压,并调用call_kernel跳转到下阶段代码. 第二:板级引导阶段(汇编实现) 主要进行cpu和体系结构的检查.cpu本身的初始化以及页表的建立等 第三:通用内核启动阶段(C语言实现:重点分析) 1. 进入ini

Linux系统管理09——引导过程与服务控制

Linux系统管理09--引导过程与服务控制 一.引导过程总览 1.init进程 ·由linux内核加载运行/sbin/init程序 ·是系统中的第一个进程,所有进程的父进程 ·PID(进程标记)号永远为1 2.Upstart启动方式 初始化配置分散存放,响应不同的启动事件 参数 说明 /etc/inittab 配置默认运行级别 /etc/sysconfig/init 控制tty终端的开启数量.终端颜色方案 /etc/init/rcS.conf 加载rc.sysinit脚本,完成系统初始化任务

Linux 引导过程

引导过程的步骤 Linux系统典型的引导过程由下面6个不同的阶段组成: 加载并初始化内核 检测和配置设备 创建内核线程 操作员干预 执行系统启动脚本 多用户模式运行 系统管理员对以上大多数步骤几乎没有什么控制权.我们通过编辑系统启动脚本来影响大多数的引导配置. 初始化内核 Linux内核本身就是一个程序,系统引导过程中的第一项任务就是把这个程序载入内存,以便执行它.内核的路径名通常是/vmlinuz或者/boot/vmlinuz. Linux系统实现了一种有两个阶段的加载过程.在第一阶段中,系统

【转】Linux 高级的视角来查看Linux引导过程

[原文]https://www.toutiao.com/i6594210975480545800/ 1.概述 图 1 是我们在20,000 英尺的高度看到的视图. 当系统首次引导时,或系统被重置时,处理器会执行一个位于已知位置处的代码.在个人计算机(PC)中,这个位置在基本输入/输出系统(BIOS)中,它保存在主板上的闪存中.嵌入式系统中的中央处理单元(CPU)会调用这个重置向量来启动一个位于闪存/ROM中的已知地址处的程序.在这两种情况下,结果都是相同的.因为PC提供了很多灵活性,BIOS必须