使用labelImg制作自己的数据集(VOC2007格式)用于Faster-RCNN训练

https://blog.csdn.net/u011956147/article/details/53239325

https://blog.csdn.net/u011574296/article/details/78953681

2018年01月02日 17:13:59 ZealCV 阅读数:10459 标签: faster-r-cnn数据标注 更多

个人分类: 深度学习

版权声明:本文为博主原创文章,欢迎转载,请注明出处 https://blog.csdn.net/u011574296/article/details/78953681

一、数据集文件夹

新建一个文件夹,用来存放整个数据集,或者和voc2007一样的名字:VOC2007 
然后像voc2007一样,在文件夹里面新建如下文件夹:

二、将训练图片放到JPEGImages

将所有的训练图片放到该文件夹里,然后将图片重命名为VOC2007的“000005.jpg”形式

图片重命名的代码(c++,python,matlab),参考:http://blog.csdn.net/u011574296/article/details/72956446

三、标注图片,标注文件保存到Annotations

使用labelIImg 标注自己的图片

1、在git上下载源码:https://github.com/tzutalin/labelImg

2、按照网页上的使用方法使用 
(1)安装PyQt4和Lxml

(2)在labelImage 的目录下 shift+右键打开cmd 运行一下命令:

pyrcc4 -o resources.py resources.qrc 
python labelImg.py

注:这个时候,就会出现labelimage的窗口

(3)labelimg窗口的使用方法: 
? 修改默认的XML文件保存位置,可以用“Ctrl+R”,改为自定义位置,这里的路径不能包含中文,否则无法保存。

? 源码文件夹中使用notepad++打开data/predefined_classes.txt,可以修改默认类别,比如改成bus、car、building三个类别。

?“Open Dir”打开需要标注的样本图片文件夹,会自动打开第一张图片,开始进行标注

? 使用“Create RectBox”开始画框

? 完成一张图片后点击“Save”,此时XML文件已经保存到本地了。

? 点击“Next Image”转到下一张图片。

? 标注过程中可随时返回进行修改,后保存的文件会覆盖之前的。

? 完成标注后打开XML文件,发现确实和PASCAL VOC所用格式一样。

每个图片和标注得到的xml文件,JPEGImages文件夹里面的一个训练图片,对应Annotations里面的一个同名XML文件,一 一 对应,命名一致

标注自己的图片的时候,类别名称请用小写字母,比如汽车使用car,不要用Car 
pascal.py中读取.xml文件的类别标签的代码: 
cls = self._class_to_ind[obj.find(‘name‘).text.lower().strip()] 
写的只识别小写字母,如果你的标签含有大写字母,可能会出现KeyError的错误。

四、ImageSets\Main里的四个txt文件

在ImageSets里再新建文件夹,命名为Main,在Main文件夹中生成四个txt文件,即: 
 
test.txt是测试集 
train.txt是训练集 
val.txt是验证集 
trainval.txt是训练和验证集

VOC2007中,trainval大概是整个数据集的50%,test也大概是整个数据集的50%;train大概是trainval的50%,val大概是trainval的50%。

txt文件中的内容为样本图片的名字(不带后缀),格式如下: 

根据已生成的xml,制作VOC2007数据集中的trainval.txt ; train.txt ; test.txt ; val.txt 
trainval占总数据集的50%,test占总数据集的50%;train占trainval的50%,val占trainval的50%; 
上面所占百分比可根据自己的数据集修改,如果数据集比较少,test和val可少一些

代码如下:

%注意修改下面四个值
xmlfilepath=‘E:\Annotations‘;
txtsavepath=‘E:\ImageSets\Main\‘;
trainval_percent=0.5; #trainval占整个数据集的百分比,剩下部分就是test所占百分比
train_percent=0.5; #train占trainval的百分比,剩下部分就是val所占百分比  

xmlfile=dir(xmlfilepath);
numOfxml=length(xmlfile)-2;#减去.和..  总的数据集大小  

trainval=sort(randperm(numOfxml,floor(numOfxml*trainval_percent)));
test=sort(setdiff(1:numOfxml,trainval));  

trainvalsize=length(trainval); #trainval的大小
train=sort(trainval(randperm(trainvalsize,floor(trainvalsize*train_percent))));
val=sort(setdiff(trainval,train));  

ftrainval=fopen([txtsavepath ‘trainval.txt‘],‘w‘);
ftest=fopen([txtsavepath ‘test.txt‘],‘w‘);
ftrain=fopen([txtsavepath ‘train.txt‘],‘w‘);
fval=fopen([txtsavepath ‘val.txt‘],‘w‘);  

for i=1:numOfxml
    if ismember(i,trainval)
        fprintf(ftrainval,‘%s\n‘,xmlfile(i+2).name(1:end-4));
        if ismember(i,train)
            fprintf(ftrain,‘%s\n‘,xmlfile(i+2).name(1:end-4));
        else
            fprintf(fval,‘%s\n‘,xmlfile(i+2).name(1:end-4));
        end
    else
        fprintf(ftest,‘%s\n‘,xmlfile(i+2).name(1:end-4));
    end
end
fclose(ftrainval);
fclose(ftrain);
fclose(fval);
fclose(ftest);  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

原文地址:https://www.cnblogs.com/shuimuqingyang/p/10178944.html

时间: 2024-10-18 02:03:25

使用labelImg制作自己的数据集(VOC2007格式)用于Faster-RCNN训练的相关文章

图像识别实验过程(三) 将数据集做成VOC2007格式用于Faster-RCNN训练

1.voc2007数据集下载 wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar t

隧道目标识别实验过程(二)标准VOC数据集和制作后的数据集实验结果对比

VOC标准数据集中一共有20个类别: 'aeroplane', 'bicycle', 'bird', 'boat','bottle', 'bus', 'car', 'cat', 'chair','cow', 'diningtable', 'dog', 'horse','motorbike', 'person', 'pottedplant','sheep', 'sofa', 'train', 'tvmonitor' 可以尝试用其中的红色标注的五个类别来对隧道目标进行识别. 标准数据集中的车和行人的

Windows10+YOLOv3实现检测自己的数据集(1)——制作自己的数据集

本文将从以下三个方面介绍如何制作自己的数据集 数据标注 数据扩增 将数据转化为COCO的json格式 参考资料 一.数据标注 在深度学习的目标检测任务中,首先要使用训练集进行模型训练.训练的数据集好坏决定了任务的上限.下面介绍两种常用的图像目标检测标注工具:Labelme和LabelImg. (1)Labelme Labelme适用于图像分割任务和目标检测任务的数据集制作,它来自该项目:https://github.com/wkentaro/labelme . 按照项目中的教程安装完毕后,应用界

深度学习Caffe实战笔记(19)Windows平台 Faster-RCNN 制作自己的数据集

"-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 深度学习Caffe实战笔记(19)Windows平台 Faster-RCNN 制作自己的数据集 - gybheroin的博客 - 博客频道 - CSDN.NET gybheroin的博客 目录视图 摘要视图 订阅 [活动]2017 CSDN博客专栏评选 &nbsp [

运动想象数据集样本太少,SAE训练过拟合严重

Before Finetuning Train Accuracy: 51.190% After Finetuning Train Accuracy: 100.000% Before Finetuning Test Accuracy: 46.429% After Finetuning Test Accuracy: 50.893% 来自为知笔记(Wiz)运动想象数据集样本太少,SAE训练过拟合严重

使用faster rcnn 跑vot2015的数据集

本周老师给的任务: 一是将VOT15数据集(世华已传到服务器上)上每个序列的第1,11,21,31,41帧分别运行Faster R-CNN检测器并保存在图片上显示的检测结果: 二是将这5帧的ground truth bounding box作为proposal得到其对应的检测器分类结果(比如网络要检测20类物体,那包括背景就是得到21类对应的检测分数值),并将每个序列的检测结果分别存成一个文本文档. 注意,使用代码的时候,可能会有路径错误,还可能是,我贴上的代码,博客园的网站给在某些语句后加了

目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练

将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as np import os import tensorflow as tf from PIL import Image classes = ["aeroplane", "bicycle", "bird", "boat", &quo

【Faster RCNN】建立数据集工厂类,并注册数据集类

在Faster RCNN中,首先使用基类imdbs创建一个工厂类.然后建立自己的具体数据集的类. 然后可以将类当做为函数,使用lambda方法进行调用实例化. 在这里,我们讲解一下lambda方法: var = (lamdba para1,para2 = func(para1,para2)) 其中,var变量存储的不是func的返回.而是func本身,如果我们输出var: print(var) #<function <lambda> at 0x000001B46BF97C80> 而

【Detection】物体识别-制作PASCAL VOC数据集

代码下载:github PASCAL VOC数据集 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge 默认为20类物体 1 数据集结构 ①JPEGImages JPEGImages文件夹中包含了PASCAL VOC所提供的所有的图片信息,包括了训练图片和测试图片. ref:PASCAL VOC数据集分析 ②Annotations Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对